
Énoncé

Montrer que l’ensemble des rationnels Q := {p
q
, p ∈ Z et q ∈ N∗} est dense dans R.

Correction

Introduction

Commençons par rappeler ce que signifie qu’une partie A de R est dense dans R. On utilise
essentiellement 2 définitions qui sont équivalentes quand on travaille dans (R, |.|) :

1) ∀(x, y) ∈ R2x < y ⇒ A∩]x, y[ ̸= ∅

Qui signifie qu’entre deux réels distincts il existe toujours au moins un élément de A.

2) ∀x ∈ R ∃(xn)n∈N ∈ AN xn −−−−→
n→+∞

x

Qui signifie que tout réel est limite d’au moins une suite d’éléments de A.
Nous ne referons pas la démonstration de l’équivalence de ces définitions ici mais nous
répondons à quelques questions que l’on peut se poser concernant la définition 1.
Pourquoi avoir pris un intervalle ouvert dans la définition ? Peut-on prendre un intervalle
fermé ? semi-ouvert ? semi-fermé ?
Prendre un intervalle ouvert vient d’un contexte plus général où l’on définit la propriété de
densité d’une partie A de (R, |.|) dans R ainsi :
Tout ouvert non vide O de (R, |.|) rencontre A (i.e O ∩ A ̸= ∅). Dans ce cadre précis, pour
vérifier cette propriété, il suffit de la vérifier pour les intervalles ouverts non vides, qui
sont des ouverts.

Ensuite, la propriété est équivalente peu importe le type d’intervalle non vide. Démontrons
l’équivalence entre l’utilisation d’intervalles ouverts et fermés.

Intervalle ouvert implique intervalle fermé :
Supposons que A ⊂ R est dense dans R.
Soit (x, y) ∈ R2 tels que x < y.
Comme A est dense dans R,

A∩]x, y[ ̸= ∅

De plus, ]x, y[⊂ [x, y], nous en déduisons :

A∩]x, y[⊂ A ∩ [x, y]

A ∩ [x, y] possède un sous-ensemble non vide donc A ∩ [x, y] ̸= ∅ .
C’était le sens trivial.

Intervalle fermé implique intervalle ouvert :



Supposons que :
∀(x, y) ∈ R2x ̸= y ⇒ A ∩ [x, y] ̸= ∅

Montrons que A est dense dans R.

Idée de la preuve

L’idée de la preuve est simple. Trouver un intervalle fermé non vide inclus dans ]x, y[ pour
appliquer la propriété et pouvoir conclure. Il existe plein de façons de construire un tel
intervalle. Déjà, on peut utiliser que le milieu de l’intervalle x+y

2 ∈]x, y[. Pour obtenir un autre
point de ]x, y[, on peut reprendre le milieu entre x et x+y

2 ou x+y
2 et y. Ceci nous permet

d’avoir un sous-intervalle fermé de ]x, y[.

Figure 1 – Schéma de la preuve

Mise en oeuvre de l’idée

Nous appliquons exactement ce qui a été dit dans le paragraphe précédent.
Soit (x, y) ∈ R2 tels que x < y.

On a :
x <

x + x+y
2

2 <
x + y

2 <
x+y

2 + y

2 < y

⇔ x <
3x + y

4 <
x + y

2 <
x + 3y

4 < y

D’après la propriété vérifiée par A, A ∩ [3x+y
4 , x+3y

4 ] ̸= ∅ car 3x+y
4 < x+3y

4 . Comme,

A ∩ [3x + y

4 ,
x + 3y

4 ] ⊂ A∩]x, y[ et A ∩ [3x + y

4 ,
x + 3y

4 ] ̸= ∅

on en déduit que A∩]x, y[ ̸= ∅. A est dense dans R.
Cette preuve se recycle et permet de traiter les autres types d’intervalles.



Démonstrations de la densité de Q dans R

Preuve par construction d’un rationnel dans un intervalle ouvert non vide

Figure 2 – Schéma de la densité de Q dans R

Explication de la preuve

L’explication de la preuve est basée sur le schéma ci-dessus. On se donne (x, y) ∈ R2 avec
x < y et on cherche à construire q ∈ Q tel que x < q < y. La première idée est d’utiliser le
fait que inf(Q∗

+) = 0. Autrement dit, on peut trouver un rationnel strictement positif aussi
proche que l’on veut de 0. En particulier, on peut trouver un rationnel q tel 0 < q < y − x
avec y − x la taille de l’intervalle ]x, y[. L’idée ensuite est qu’au moins un multiple de
q (donc toujours un rationnel) est dans ]x, y[. En effet, quand on additionne q à lui même,
on se déplace vers la droite sur la droite des réels par petits sauts. Le principe d’Archimède
((nq)n∈N tend vers +∞ quand n tend vers +∞) nous assure qu’on va trouver un entier n
vérifiant nq ≤ x < (n + 1)q. Enfin, comme le saut entre nq et (n + 1)q est petit (inférieur à
la taille de l’intervalle ]x, y[), on est sûr que (n + 1)q < y, (n + 1)q n’a pas pu dépasser y et
atterir en dehors de l’intervalle. (n + 1)q est le rationnel qui convient.

Mise en forme de la preuve

Les calculs qui suivent sont l’exact mise en forme du paragraphe ci-dessus.

1ère étape : Trouver un rationnel positif petit

Soit (x, y) ∈ R2 tels que x < y.
On a y − x > 0.



On cherche un rationnel dans l’intervalle ]0, y − x[. Ce rationnel dépend de x et y donc on
peut le chercher en lien avec la quantité y − x.

1er essai :
Si on avait y − x ∈ Q, alors y−x

2 conviendrait.
Malheureusement, en général y − x /∈ Q. On ne peut pas considérer y − x directement.

2eme essai :
On est gêné par le fait que y − x /∈ Q en général. Peut-être pouvons nous contourner cette
difficulté grâce à ⌊y − x⌋ ∈ N. Si on avait y − x ≥ 1, par croissance de la partie entière, on
aurait

⌊y − x⌋ ≥ ⌊1⌋ ⇔ ⌊y − x⌋ ≥ 1 ⇒ ⌊y − x⌋ > 0

Et alors
0 <

⌊y − x⌋
2 < ⌊y − x⌋ ≤ y − x

Donc ⌊y−x⌋
2 conviendrait.

Malheureusement, on n’est pas assuré que y − x ≥ 1, notamment si x et y sont très proches.
On peut donc avoir ⌊y − x⌋ = 0 ce qui empêche d’appliquer la construction ci-dessus.

3ème essai :
On n’a pas encore regardé la quantité (bien définie) 1

y−x
. On ne sait pas si elle est rationnelle,

mais on sait que
1
1

y−x

= y − x

Un rationnel positif proche de 1
y−x

est
⌊

1
y−x

⌋
. Donc sous-réserve d’existence,

1⌊
1

y−x

⌋ est un rationnel proche de 1
1

y−x

= y − x.

On examine en détails
⌊

1
y−x

⌋
∈ N pour confirmer notre intuition et finir la première étape de

la preuve. Par propriété de la partie entière,⌊
1

y − x

⌋
≤ 1

y − x
<

⌊
1

y − x

⌋
+ 1

On sait que y − x > 0, par décroissance de la fonction inverse sur R∗
+,

y − x >
1⌊

1
y−x

⌋
+ 1

et 1⌊
1

y−x

⌋
+ 1

> 0

1
⌊ 1

y−x⌋+1
∈ Q∗

+ convient.

2ème étape : on le déplace dans l’intervalle

Considérons la suite des multiples de 1
⌊ 1

y−x⌋+1
: (n 1

⌊ 1
y−x⌋+1

)n∈Z.
On a :



n
1⌊

1
y−x

⌋
+ 1

→
n→+∞

+∞

et

n
1⌊

1
y−x

⌋
+ 1

→
n→−∞

−∞

On est sûr d’être plus loin de zéro que x à partir d’un certain rang, i.e |n 1
⌊ 1

y−x⌋+1
| > |x|.

Déterminons le multiple de 1
⌊ 1

y−x⌋+1
le plus proche de x et inférieur à x. Un tel entier k ∈ Z

vérifie :

k
1⌊

1
y−x

⌋
+ 1

≤ x < (k + 1) 1⌊
1

y−x

⌋
+ 1

En multipliant ces inégalités par
⌊

1
y−x

⌋
+ 1 > 0 :

⇔ k ≤ x

⌊
1

y − x

⌋
+ 1 < (k + 1)

Par définition de la partie entière,

⇔ k =
⌊
x

⌊
1

y − x

⌋
+ 1

⌋
∈ Z

On a alors d’après ce qui précède,

x < (k + 1) 1⌊
1

y−x

⌋
+ 1

= k
1⌊

1
y−x

⌋
+ 1

+ 1⌊
1

y−x

⌋
+ 1

On a démontré précédemment par construction,

k
1⌊

1
y−x

⌋
+ 1

≤ x et 1⌊
1

y−x

⌋
+ 1

< y − x (vient de l’étape 1)

Donc
x < (k + 1) 1⌊

1
y−x

⌋
+ 1

< x + (y − x)

⇔ x < (k + 1) 1⌊
1

y−x

⌋
+ 1

< y

Donc

(k + 1) 1⌊
1

y−x

⌋
+ 1

∈ Q∩]x, y[

Q est dense dans R.



Remarque :
Si l’on réfléchit bien, les arguments de cette preuve montrent que tout ensemble A ⊂ R vérifiant
inf(A ∩ R∗

+) = 0 et stable par + et − est dense dans R. Ici on a voulu exhiber un rationnel
proche de 0 mais ce n’est pas nécessaire, l’existence étant déjà donnée par inf(Q∗

+) = 0. Nous
en déduisons que les nombres dyadiques et les nombres décimaux sont denses dans R (nous
les redéfinissons plus tard dans la section Sous-ensembles de rationnels denses dans R).

Preuve utilisant la caractérisation séquentielle

Soit x ∈ R.
On doit construire une suite (xn)n∈N ∈ QN de rationnels qui converge vers x.

idée de la preuve

Voici l’idée, si (un)n∈N est une suite qui tend vers +∞,
On a

⌊unx⌋
un

→
n→+∞

x.

En prenant une suite de rationnels (un)n∈N qui tend vers +∞, la nouvelle suite construite
( ⌊unx⌋

un
)n∈N est encore une suite de rationnels qui converge vers x.

La preuve

Soit (un)n∈N ∈ RN qui tend vers +∞. Démontrons la propriété énoncée dans idée de la
preuve.
On dispose du développement asymptotique suivant (voir Remarque) :

unx =
n→+∞

⌊unx⌋ + O(1)

⇔ ⌊unx⌋ =
n→+∞

unx + O(1)

⇔ ⌊unx⌋
un

=
n→+∞

x + O( 1
un

)

Comme 1
un

→
n→+∞

0,

⌊unx⌋
un

→
n→+∞

x

Remarque :
Le développement asymptotique est issu de l’inégalité définissant la partie entière d’un réel y :

⌊y⌋ ≤ y < ⌊y⌋ + 1



⇔ 0 ≤ y − ⌊y⌋ < 1

Donc

y − ⌊y⌋ =
y→+∞

O(1), c’est à dire y − ⌊y⌋ est borné au voisinage de + ∞.

Pour conclure, il suffit de trouver une suite de rationnels qui tend vers +∞ quand n → +∞.
Par exemple (n + 1)n∈N, qui plus est ne s’annule pas, donc ⌊(n+1)x⌋

n+1 est défini pour tout
n ∈ N.

Sous-ensembles de rationnels denses dans R :

Cette dernière démonstration permet de montrer que l’ensemble des nombres décimaux
et l’ensemble des nombres dyadiques sont denses dans R.

Les dyadiques sont les éléments de l’ensemble :

{ m

2n
| m ∈ Z et n ∈ N} ⊂ Q

Les décimaux sont les éléments de l’ensemble :

D := { m

10n
| m ∈ Z et n ∈ N} ⊂ Q

En prenant pour tout n ∈ N, un := 2n on a une suite de dyadiques ( ⌊2nx⌋
2n )n∈N qui converge

vers x. En effet, pour tout n ∈ N ⌊2nx⌋ ∈ Z et 2n →
n→+∞

+∞). Pour avoir la densité des
nombres décimaux, il suffit de prendre pour tout n ∈ N un := 10n et on obtient la suite
( ⌊10nx⌋

10n )n∈N qui converge vers x.

Approximation à gauche et à droite par des suites de rationnels R :

Soit x ∈ R et n ∈ N.
D’après l’inégalité définissant la partie entière et la positivité de n + 1,

x − 1
n + 1 ≤ ⌊(n + 1)x⌋

n + 1 ≤ x

Ainsi, la suite ( ⌊(n+1)x⌋
n+1 )n∈N est toujours inférieure à x et converge vers x. Elle approxime x

par valeurs inférieures (ou par la gauche).
Tandis que la suite ( ⌊(n+1)x⌋+1

n+1 )n∈N approxime x par valeurs supérieures (ou par la droite),
d’après l’inégalité ci-dessous :

x ≤ ⌊(n + 1)x⌋ + 1
n + 1 ≤ x + 1

n + 1



Résumé des preuves

preuve 1 : Construction de q ∈ Q dans ]x, y[
1) Trouver un rationnel suffisamment proche de 0 : y − x > 1

⌊ 1
y−x⌋+1

> 0

2) Au moins un multiple de ce rationnel est dans ]x, y[ :
⌊
x

⌊
1

y−x

⌋
+ 1

⌋
× 1

⌊ 1
y−x⌋+1

∈ Q∩]x, y[.

preuve 2 : Par caractérisation séquentielle
1) Montrer par encadrement de la partie entière que :

⌊(n + 1)x⌋
n + 1 −−−−→

n→+∞
x

2)On montre au passage la densité dans R des dyadiques ou des décimaux :

⌊2nx⌋
2n

−−−−→
n→+∞

x ou ⌊10nx⌋
10n

−−−−→
n→+∞

x


