Enoncé

Montrer que ’ensemble des rationnels Q := {%, p € Z et g € N*} est dense dans R.

Correction
Introduction

Commencons par rappeler ce que signifie qu'une partie A de R est dense dans R. On utilise
essentiellement 2 définitions qui sont équivalentes quand on travaille dans (R, |.|) :
1) VY(r,y) € R%z <y = ANjx,y[# 0

Qui signifie qu’entre deux réels distincts il existe toujours au moins un élément de A.

2) Vo €R I(xp)ney € AV 2, — 7

Qui signifie que tout réel est limite d’au moins une suite d’éléments de A.

Nous ne referons pas la démonstration de 1’équivalence de ces définitions ici mais nous
répondons a quelques questions que 'on peut se poser concernant la définition 1.

Pourquoi avoir pris un intervalle ouvert dans la définition? Peut-on prendre un intervalle
fermé ? semi-ouvert ? semi-fermé ?

Prendre un intervalle ouvert vient d’un contexte plus général o 'on définit la propriété de
densité d'une partie A de (R, |.|) dans R ainsi :

Tout ouvert non vide O de (R, |.|) rencontre A (i.e O N A # (). Dans ce cadre précis, pour
vérifier cette propriété, il suffit de la vérifier pour les intervalles ouverts non vides, qui
sont des ouverts.

Ensuite, la propriété est équivalente peu importe le type d’intervalle non vide. Démontrons
I’équivalence entre I'utilisation d’intervalles ouverts et fermés.

Intervalle ouvert implique intervalle fermé :
Supposons que A C R est dense dans R.
Soit (z,y) € R? tels que x < ¥.
Comme A est dense dans R,

ANz, y[# 0

De plus, |z, y[C [z,y], nous en déduisons :

ANz, y[C ANz, y]

AN [z,y] posséde un sous-ensemble non vide donc | AN [z,y] # 0|.

C’était le sens trivial.
Intervalle fermé implique intervalle ouvert :




Supposons que :
V(z,y) e Rz £y = ANz, y] #0

Montrons que A est dense dans R.

Idée de la preuve

L’idée de la preuve est simple. Trouver un intervalle fermé non vide inclus dans |z, y| pour
appliquer la propriété et pouvoir conclure. Il existe plein de facons de construire un tel
intervalle. Déja, on peut utiliser que le milieu de I'intervalle x;—y €]z, y[. Pour obtenir un autre
point de |z, y[, on peut reprendre le milieu entre x et % ou L;y et y. Ceci nous permet

d’avoir un sous-intervalle fermé de |z, y|.

(x+(x+y)/2)/2 ((x+y)/2+y)/2
>

X (x+y)/2 y

FIGURE 1 — Schéma de la preuve

Mise en oeuvre de 1’idée

Nous appliquons exactement ce qui a été dit dans le paragraphe précédent.
Soit (z,y) € R? tels que x < ¥.

On a: » i
v+ ety Sty
< < < <
g 2 2 2 Y
3r+y r4+y x+3y
T < < < <
STy 2 r =Y
D’apres la propriété vérifiée par A, AN [3’6%, %] # () car 3{% < %?’y. Comme,
3x+y z+3 3r+y x+3
AN = cAnfeyl et An[— 2 =] £ 0

on en déduit que ANz, y[# 0. A est dense dans R.
Cette preuve se recycle et permet de traiter les autres types d’intervalles.



Démonstrations de la densité de Q dans R

Preuve par construction d’un rationnel dans un intervalle ouvert non vide

FIGURE 2 — Schéma de la densité de Q dans R

Explication de la preuve

L’explication de la preuve est basée sur le schéma ci-dessus. On se donne (x,y) € R? avec
x < y et on cherche a construire g € Q tel que x < ¢ < y. La premiere idée est d’utiliser le
fait que inf(Q% ) = 0. Autrement dit, on peut trouver un rationnel strictement positif aussi
proche que 'on veut de 0. En particulier, on peut trouver un rationnel q tel 0 < ¢ <y — =
avec y — z la taille de l’intervalle |z, y[. L'idée ensuite est qu’au moins un multiple de
q (donc toujours un rationnel) est dans |z, y[. En effet, quand on additionne q & lui méme,
on se déplace vers la droite sur la droite des réels par petits sauts. Le principe d’Archimede
((nq)nen tend vers +oo quand n tend vers +00) nous assure qu’on va trouver un entier n
vérifiant ng < x < (n+ 1)¢. Enfin, comme le saut entre ng et (n + 1)q est petit (inférieur a
la taille de 'intervalle |z, y[), on est str que (n+ 1)g < y, (n+ 1)g n’a pas pu dépasser y et
atterir en dehors de I'intervalle. (n + 1)q est le rationnel qui convient.

Mise en forme de la preuve

Les calculs qui suivent sont ’exact mise en forme du paragraphe ci-dessus.

lére étape : Trouver un rationnel positif petit

Soit (x,y) € R? tels que z < y.
Onay—x>0.



On cherche un rationnel dans l'intervalle |0,y — z[. Ce rationnel dépend de = et y donc on
peut le chercher en lien avec la quantité y — x.

ler essai :
Si on avait y — x € Q, alors ¥5* conviendrait.
Malheureusement, en général y — x ¢ Q. On ne peut pas considérer y — x directement.

2eme essai :
On est géné par le fait que y — 2 ¢ Q en général. Peut-étre pouvons nous contourner cette
difficulté grace a |y — x| € N. Si on avait y — x > 1, par croissance de la partie entiére, on
aurait

ly—z]=z[l]ely—z/21=ly—z]/>0

Et alors
ly — |

0
S

<|ly—z|<y—=z

Donc Ly;—” conviendrait.
Malheureusement, on n’est pas assuré que y — x > 1, notamment si x et y sont tres proches.
On peut donc avoir |y — x| = 0 ce qui empéche d’appliquer la construction ci-dessus.
3éme essai :
On n’a pas encore regardé la quantité (bien définie) —-. On ne sait pas si elle est rationnelle,

y—a’
mals on sait que

1
=Yz
y—x
Un rationnel positif proche de —— est {%J Donc sous-réserve d’existence,
y—T Yy—x
1 ) 1
+— est un rationnel proche de —— =y —x.

= =

On examine en détails {LJ € N pour confirmer notre intuition et finir la premiere étape de

Yy—x

la preuve. Par propriéte de la partie entiere,

1 1 1
< < +1
y—x y—x y—z

On sait que y — z > 0, par décroissance de la fonction inverse sur R,

y—x >
]+
LyiiJH € Q% convient.

2éme étape : on le déplace dans P’intervalle

1
|41

Considérons la suite des multiples de [ i T : (nL Ynez-
Yy—x

On a:



1
A R

et

1
e e e e
n —0o0
=R
On est siir d’étre plus loin de zéro que = a partir d’un certain rang, i.e \nﬁ| > |zl
Yy—x
Déterminons le multiple de ﬁ le plus proche de z et inférieur & x. Un tel entier k € Z
y—x
vérifie :

En multipliant ces inégalités par LJ_%J +1>0:

S k<zx

_y—xJ+1<(kH)

Par définition de la partie entiere,
1
Sk=|z { J + 1J S/

On a alors d’apres ce qui précede,

1 1 1
r < (k+1) =k +
1 1 1
Rl [
On a démontré précédemment par construction,
b < et < (vient de I'étape 1)
<z e y—x (vient de I'étape
1 1
=1k =1k
Donc 1
r<(k+1) <z+(y—=x)
=R
sSlr<(k+1) <y
1
=ik
Donc

1
(k + 1)W € QNjz, y|

Yy—x

Q est dense dans R.



Remarque :

Si 'on réfléchit bien, les arguments de cette preuve montrent que tout ensemble A C R vérifiant
inf(ANR%) = 0 et stable par + et — est dense dans R. Ici on a voulu exhiber un rationnel
proche de 0 mais ce n'est pas nécessaire, 'existence étant déja donnée par inf(Q% ) = 0. Nous
en déduisons que les nombres dyadiques et les nombres décimaux sont denses dans R (nous
les redéfinissons plus tard dans la section Sous-ensembles de rationnels denses dans R).

Preuve utilisant la caractérisation séquentielle

Soit z € R.
On doit construire une suite (z,)n,en € Q" de rationnels qui converge vers x.

idée de la preuve

Voici l'idée, si (u,,)nen est une suite qui tend vers +o0o,
On a
[unz]
- — .
Uy, n—-+o0o
En prenant une suite de rationnels (u,),en qui tend vers +o00, la nouvelle suite construite
(M)%N est encore une suite de rationnels qui converge vers x.

Un

La preuve

Soit (un)nen € RY qui tend vers +oo. Démontrons la propriété énoncée dans idée de la
preuve.
On dispose du développement asymptotique suivant (voir Remarque) :

Ul = |upz] + O(1)

& |upz| T UnT O(1)

1
o Ll _ z+O0(—)
U, n—-+o0o Up,
Comme ui — 0,
n n——+00
[un] —
Uy, n—+oo
Remarque :

Le développement asymptotique est issu de 'inégalité définissant la partie entiere d’un réel y :

lyl <y<lyl+1



s0<y— |yl <1

Donc

y—ly] O(1), c’est a dire y — |y| est borné au voisinage de + oc.

yﬁ:oo

Pour conclure, il suffit de trouver une suite de rationnels qui tend vers +o0o quand n — 4o0.

Par exemple (n + 1),en, qui plus est ne s’annule pas, donc % est défini pour tout

n € N. O

Sous-ensembles de rationnels denses dans R :

Cette derniere démonstration permet de montrer que I’ensemble des nombres décimaux
et ’ensemble des nombres dyadiques sont denses dans R.
Les dyadiques sont les éléments de I’ensemble :

{zﬂn\mEZetnEN}CQ

Les décimaux sont les éléments de ’ensemble :
m
ID)::{l—On\meZetneN}CQ

En prenant pour tout n € N, u,, := 2" on a une suite de dyadiques (LQ;TIJ)%N qui converge

vers x. En effet, pour tout n € N[2"z| € Z et 27 = +00). Pour avoir la densité des
n e.9]
nombres décimaux, il suffit de prendre pour tout n € N u, := 10" et on obtient la suite

[10™z] :
(557 Jnen qui converge vers .

Approximation a gauche et a droite par des suites de rationnels R :

Soit z € Ret n € N.
D’apres I'inégalité définissant la partie entiere et la positivité de n + 1,

1

T — <Lt ba] o
n+1~ n+1 —
Ainsi, la suite (%)%N est toujours inférieure a x et converge vers x. Elle approxime z
par valeurs inférieures (ou par la gauche).

Tandis que la suite (W”;liﬁﬁl

d’apres 'inégalité ci-dessous :

Jnen approxime x par valeurs supérieures (ou par la droite),

< [(n+1)z] +1 <o+ 1
n+1 n+1



Résumé des preuves

preuve 1 : Construction de ¢ € Q dans |z, y[
1) Trouver un rationnel suffisamment proche de 0 : y — z > 1 >0

2) Au moins un multiple de ce rationnel est dans |z, y[ : Lx {

<
| [~
8
| I
—_
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X
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-
—
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+
—

preuve 2 : Par caractérisation séquentielle
1) Montrer par encadrement de la partie entiére que :

|(n+ 1)z|
n+1 n—H—oo/

2)On montre au passage la densité dans R des dyadiques ou des décimaux :

| 2"z | | 10"x|
— T Oou X
omn n—+oo 107 n——+o00




