Enoncé

Soit n € N* et (zq,...,x,) € R"™
Démontrer la formule :

n

M@k +w) = > TICx) IT ()

k=1 IeP([1,n]) kel kele

ol
[L,n] :={meZ,1<m<n}

P([1,n]) :={1|1cC[1,n]}
SileP(1,n]), Ic={me[l,n], m¢lI}

Correction

Bonne définition des termes mis en jeu

On peut se demander ici si les sommes et produits mis en jeu sont bien définis car les
indexations sont sur des ensembles qu’on a moins ’habitude de manipuler.

[1,n] est fini et son cardinal (le nombre d’éléments qu'il contient) vaut n. Donc, P([[1,n]) est
fini et 1'on sait, d’apres le cours de MPSI que son cardinal vaut 2". Si [ C [1,n] alors I et ¢
sont finis en tant que sous-ensembles de [1,n] qui est fini.

Ainsi, toutes les sommes et tous les produits sont indéxés par des ensemble finis. Ceci
permet de donner un sens a chaque termes de I'égalité et conclure que les termes de 1'égalité
sont bien définis.

Résolution dans le cas ou n est petit

Le terme a droite serait a priori la somme que 'on obtient lorsqu’on développe le produit
n

H (xr+yk). Avant de s’attaquer a la démonstration de la formule générale, on peut se rassurer
k=1
en vérifiant qu’elle est vraie pour n petit, c’est-a-dire n € {1, 2}.

Pour n=1":

Du c6té gauche on a :
1

H(a:k —i—yk) =21+
k=1

Du coté droit on a :

1eP([1,1]) kel kele



Il n’y a que deux sous-ensembles de [1,1] = {1} qui sont () et {1} de cardinaux respectifs 0
et 1. De plus dans le contexte de la sous-section, )¢ = {1} et {1}° = ). Ceci donne :

o TTGe) TT k) = TT@e) TT (we) + I (z) [T(0k) = Lo + 211

IeP([1,1]) keI kelc kep ke{1} ke{1} keo

Rappelons que par convention, un produit indexé par un ensemble vide vaut 1.
On a ainsi démontré :

1

M@k +w) = > Tl [T

k=1 1eP([1,1]) kel k¢l

Pour n=2:
Du coté gauche en développant :

2

I @k + ue) = (21 +91) (22 + y2) = 2122 + T1Y2 + Y122 + Y13
k=1

Du coté droit :

Z H@k) H (Yx)

1eP([1,2]) kel kele

[1,2] contient (), {1}, {2} et {1,2} de cardinaux respectifs 0, 1 , 1 et 2. De plus dans le
contexte de la sous-section, ¢ = {1,2} et {1}¢ = {2}, {2}° = {1}, {1,2}° = 0. Ceci donne :

Z Hwkﬂykznwk H Yk + H%Hyk + kaHyk: + H $kH?/k

IeP([1,2]) keI kel ked  ke{1,2} ke{1}  ke{2} ke{2}  ke{1} ke{1,2}  ked

o Iz 11 we = Lynye + 2192 + 2oys + w120.1
IeP([1,2]) kel  kelc

Donc,

kl:[(xk-i-yk)— S Iz IT ve

IeP([1,2]) kel  kel©

Pour les premieéres valeurs de n, la formule est vraie.
Démonstration informelle par dénombrement

n

On consideére la quantité ] (zx + yi).
k=1

Elle se réécrit, de maniére informelle :



n

H(xk +ur) = (r1+y1) X (22 +y2) X oo X (2, + Yn)
k=1

Comment obtient-on un terme du produit sous forme développée ?

Dans chaque parenthese il faut choisir un terme et multiplier entre eux les termes
choisis.

Par exemple,

Dans la premiere parenthese on choisit z;.

Dans la deuxieme parenthese on choisit ys.

Dans la derniere parenthese on choisit y,.
Ce processus de n étapes multiplicatives (chaque étape correspond au choix d’un facteur
dans un produit), permet d’obtenir un terme du produit écrit sous forme développée :

T1 X Yo X oo X Yy

Le développement final ressemble ainsi a :
(T14y1) X (Ta+y2) X X (T +Yn) = X122 X - X Ty 1T HY1To X X Ty 1T+ Y1 Y2 X+ XY 1Yn

Combien de produits avons-nous ?

En fait, on a n étapes multiplicatives et a chaque étape k € [1,n] du processus, on a 2
possibilités :

le produit contient z; ou le produit contient yy.
Les choix a chaque étapes étant indépendants, d’apres le principe multiplicatif, on
obtient 2" produits de n termes.

Voici une illustration de 'obtention de tous les facteurs dans le cas n = 3 :

Choix 1
1 ou Y1

Choix 2 Choix 2

To OU Y2 T2 Ou Y2

Choix 3 Choix 3 Choix 3 Choix 3
I3 ou Y3 I3 ou y3 I3 ou Y3 T3 ou ys3

(z1z2zs)  (wa%2ys) (@ayews]  (@ayeys)  (amews)  (yav2ys)  (Yagews)  (Yay2ys)




On retrouve bien 23 = 8 produits de 3 termes différents.

Comment écrire tous ces produits sous un symbole > 7
Le fait qu’il y ait 2" produits n’est pas anodin. C’est le cardinal de I’ensemble des parties
de [1,n]. 11 existe donc au moins un moyen d’associer une unique partie de [1,n] a chaque
produit obtenus en développant. Analysons notre construction pour exhiber cette bijection.

Pour chaque terme du développement, on a effectué un choix a chaque étape k € [1,n],
consistant a prendre soit xy, soit y,. Ce choix peut étre modélisé par un sous-ensemble
I C[l,n],ou:

— k € I signifie que 1’on a choisi xy,

— k ¢ I signifie que I'on a choisi y.
Ainsi, chaque terme du développement est de la forme :

1T = 1T v

kel kele

pour un certain sous-ensemble I C [1, n].
On a ainsi trouvé une bijection naturelle entre les éléments de P([1,n]) et les 2" produits
apparaissants dans le développement de [I7_, (zx + yx) :

I~ II:Ik II Yk

kel kelc

Pour obtenir tous les termes du développement, il suffit donc de sommer sur I’ensemble des
parties de [1,7n] et 'on obtient I’expression :

M +m = > o Iln

k=1 1eP(in]) kel kel®

Démonstration formelle par récurrence

Pour démontrer rigoureusement la formule

Me+w= ¥ e T

1€P([1,n]) kel kele

on peut penser a effectuer un raisonnement par récurrence.
En effet,
-le produit est indexé de 1 a n avec n un entier naturel,
-le lien entre la formule aux rangs n 4+ 1 et n est facilement effectué :

n+1

H (xk + yk) = (Tnt1 + Y1) X H (r + yi)
k=1 k=1



-les cas n =1 ou n = 2 ont été vérifiés sans difficulté.
Considérons pour tout n € N* la propriété P(n) définie par :

n

Pn) =« Y((z1,. .. 20n), W1, yn) ER" X R [[(xe+ue) = > [I(@e) I] (we) »

k=1 IeP([1,n]) kel kele

Démontrons par récurrence que P(n) est vraie pour tout n € N*.
L’initialisation (le cas n = 1) a déja été verifiée.

Hérédité : Soit n € N* Supposons P(n). Montrons P(n + 1).
Soit (@1, ..., Tpe1) € R et (y1,...,ynr1) € R™TL

n+1 n
Iz + v) = (@ng1 + Yns1) ¥ ] 2k + i)
k=1 k=1

D’apres P(n),

Maetw = S Tl ILw)

k=1 IeP([1,n]) kel kele
Donc
n+1
H(Ik + yk) = ($n+1 + yn+1) X Z H(l"k) H (Z/k)
k=1 IeP([1,n]) kel kel

On distribue la somme sur z,,; et y,.1 et on utilise la linéarité de la somme :

n+1
H (xk + yk) = Z Tnt1 H(xk) H (yk) + Z Yn+1 H(l"k) H (yk:)
k=1 1€P([1,n]) kel kele 1€P([1,n]) kel kele
Pour tout I € P, ([1,n]) o1 [[(ze) = [] (zx) et par commutativité de x :
kel kelu{n+1}
Yot [T () TT (o) = TT@)ynrn I () = T[T C2)  IT  (we)
kel kele kel kele kel kelIcU{n+1}
Donc
n+1
[T+ = > IT () [T () + > I II
k=1 IeP([1,n]) keIu{n+1} kele IeP([1,n]) kel kelcu{n+1}

A présent, il suffit de prouver que le terme de droite est

> 1T IT ().

1€P([1,n+1]) kel kele



On doit le mettre en évidence en transformant ’écriture des sommes.

n+1
Examinons la 1ére somme du développement de [] (zx + k).

k=1
Soit I € P([1,n]).
Comme ¢ C [1,n], ona I°N{n+1} = 0.
Donc I¢ C {n+ 1}°.
D’apres les lois de De Morgan,

r=rn{n+1}*=JU{n+1})°

La premiere somme se réécrit :

> II @) Ilw= > II @) II

IeP([1,n]) kelU{n+1} kele IeP([1,n]) kelu{n+1} ke(Iu{n+1})c

On effectue le changement de variable J = I U{n+ 1} (bijection entre les parties de [1,n]
et les parties de [[1,n + 1]) qui contiennent n + 1) :

> I @) I W= > Iz Il w

IeP([1,n]) kelU{n+1} ke(IU{n+1})°c JeP([1,n+1]) ke  keJe
n+leJ

Examinons la 2eme somme.

Soit I € P([1,n]).

De la méme fagon que pour la lére somme, on a I C {n + 1}
Donc

I=In{n+1}*=I\{n+1}
De plus d’apres les lois de De Morgan,

IFu{n+1}=((I°U{n+1}))=UnNn{n+1}H)=I\{n+1}

La deuxiéme somme se réécrit :

> @) 11 = > I @ 11 (W

1€P([1,n]) kel keleU{n+1} 1€P([1,n]) kel\{n+1} ke(I\{n+1})°

Effectuons le changement de variable J = I\ {n+ 1} (bijection entre les parties de [1,n])
et les parties de [[1,n + 1]) qui ne contiennent pas n + 1) :

Z H (k) H (yx) = Z H(ivk) H (Y&

IeP([1,n]) kIe\{n+1} ke(I\{n+1})c JeP([1,n+1]) keJ keJe
n+1¢J

Donc on obtient 1’égalité :

n+1
[[etw) = > Tz llw + > @) I
k=1 JeP([1,n+1]) keJ keJe JeP([1,n+1]) keJ keJe

n+leJ n+l¢J



Dans la premiere somme on a toutes les parties de [[1,n + 1] qui contiennent n + 1 et dans la
deuxieéme toutes les parties de [1,n + 1] qui ne contiennet pas n 4+ 1. On a donc toutes les
parties de [1,n + 1]. On peut conclure que :

n+1
MHae+uw) = > Il IT we
k=1 JeP([n+1]) kT keJe

P(n+ 1) est vraie.
La propriété est vraie au rang 1 et héréditaire a partir de ce méme rang, d’apres le principe
de récurrence, elle est vraie pour tout entier naturel n non nul.

]

Remarque finale
Les éléments que I'on a manipulé (les (2;)icp1,n)) sont des réels mais I'on a seulement utilisé
(implicitement) les propriétés d’anneau commutatif de (R, +, x). Ainsi, I’égalité reste
vraie dans n’importe quel anneau commutatif (A, +, x) comme (C, +, xX) ou 'anneau des
polynomes (A[X],+, x) a coefficients dans un anneau commutatif (A4, +, x).

Résumé des preuves

Preuve 1 : Pénombrement

1) Réécrire [] (zr + yk) = (z1 4 y1) X (@2 + y2) X o X (20 + Yn)
k=1
2) Compter le nombre d’élements quand on développe : 2" produits de n termes.

)
3) On cherche un lien avec P([1,n]) qui est de cardinal 2"
3) On se rend compte que construire un des 2" produits revient au choix d’une partie I de
[1,n] par cette bijection :

I — Ilitk II Yk

kel kele

4) On somme la quantité H Tk H yr sur I'ensemble des parties de [1,n] pour obtenir les 2"
kel kele
produits du développement de (1 + y1) X (X2 + y2) X ... X (Tp, + Yp) :

(14 1y1) X (@2 +32) X oo X (@n+yn) = >, [[@) I (we)

1eP(in]) kel kele

Preuve 2 : Récurrence
1) On pose la propriété :

n

P(n) =«V((x1,...,20), (W1, ) ER" X R [[(xr+w) = D, [[(ze) I] (wx) »

k=1 1€P([1,n]) kel kele

2) On initialise la récurrence a n = 1 en vérifiant :



IE(%JF%) = > 1l II we)

IeP([1,1]) kel kelc

3) On prouve I'hérédité de la propriété. On suppose P(n) et on montre P(n + 1).
4) On part de :

n+1 n
H (T + Yk) = (Tng1 + Yng1) X H (zx + Yk)
k=1 k=1

5) On utilise P(n), on distribue et on réécrit I'indexation des produits pour arriver a :

n+1
[Tae+w) = > IT Go) [T () + > I II
k=1 IeP([1,n]) kelTu{n+1} kel IeP([1,n]) kel kelcu{n+1}

6) Dans la somme de gauche on fait le changement de variable J = I U {n + 1} pour montrer

qu’on a toutes les parties de [1,n + 1] qui contiennent n + 1.

7) Dans la somme de droite on fait le changement de variable J = I \ {n + 1} pour montrer
qu’on a toutes les parties de [1,n + 1] qui ne contiennent pas n + 1.

8) On a donc sommé sur toutes les parties de [1,n + 1] la quantité [](zx) ] () ce qui

kel kele
donne

n+1

Mae+u) = > Il IT v

k=1 JeP([1,n+1]) keJ  keJe

9) L’hérédité est prouvée ce qui termine la preuve grace au principe de récurrence.



