
Énoncé

Soit n ∈ N∗ et (x1, . . . , xn) ∈ Rn.
Démontrer la formule :

n∏
k=1

(xk + yk) =
∑

I∈P(J1,nK)

∏
k∈I

(xk)
∏

k∈Ic

(yk)

où
J1, nK := {m ∈ Z , 1 ≤ m ≤ n}

P(J1, nK) := {I | I ⊂ J1, nK}

Si I ∈ P(J1, nK), Ic := {m ∈ J1, nK , m /∈ I}

Correction

Bonne définition des termes mis en jeu

On peut se demander ici si les sommes et produits mis en jeu sont bien définis car les
indexations sont sur des ensembles qu’on a moins l’habitude de manipuler.
J1, nK est fini et son cardinal (le nombre d’éléments qu’il contient) vaut n. Donc, P(J1, nK) est
fini et l’on sait, d’après le cours de MPSI que son cardinal vaut 2n. Si I ⊂ J1, nK alors I et Ic

sont finis en tant que sous-ensembles de J1, nK qui est fini.
Ainsi, toutes les sommes et tous les produits sont indéxés par des ensemble finis. Ceci
permet de donner un sens à chaque termes de l’égalité et conclure que les termes de l’égalité
sont bien définis.

Résolution dans le cas où n est petit

Le terme à droite serait à priori la somme que l’on obtient lorsqu’on développe le produit
n∏

k=1
(xk +yk). Avant de s’attaquer à la démonstration de la formule générale, on peut se rassurer

en vérifiant qu’elle est vraie pour n petit, c’est-à-dire n ∈ {1, 2}.

Pour n = 1 :
Du côté gauche on a :

1∏
k=1

(xk + yk) = x1 + y1

Du côté droit on a :
∑

I∈P(J1,1K)

∏
k∈I

(xk)
∏

k∈Ic

(yk)



Il n’y a que deux sous-ensembles de J1, 1K = {1} qui sont ∅ et {1} de cardinaux respectifs 0
et 1. De plus dans le contexte de la sous-section, ∅c = {1} et {1}c = ∅. Ceci donne :

∑
I∈P(J1,1K)

∏
k∈I

(xk)
∏

k∈Ic

(yk) =
∏
k∈∅

(xk)
∏

k∈{1}
(yk) +

∏
k∈{1}

(xk)
∏
k∈∅

(yk) = 1.y1 + x1.1

Rappelons que par convention, un produit indexé par un ensemble vide vaut 1.
On a ainsi démontré :

1∏
k=1

(xk + yk) =
∑

I∈P(J1,1K)

∏
k∈I

(xk)
∏
k /∈I

(yk)

Pour n = 2 :
Du côté gauche en développant :

2∏
k=1

(xk + yk) = (x1 + y1)(x2 + y2) = x1x2 + x1y2 + y1x2 + y1y2

Du côté droit :
∑

I∈P(J1,2K)

∏
k∈I

(xk)
∏

k∈Ic

(yk)

J1, 2K contient ∅, {1}, {2} et {1, 2} de cardinaux respectifs 0 , 1 , 1 et 2. De plus dans le
contexte de la sous-section, ∅c = {1, 2} et {1}c = {2}, {2}c = {1}, {1, 2}c = ∅. Ceci donne :

∑
I∈P(J1,2K)

∏
k∈I

xk

∏
k∈Ic

yk =
∏
k∈∅

xk

∏
k∈{1,2}

yk +
∏

k∈{1}
xk

∏
k∈{2}

yk +
∏

k∈{2}
xk

∏
k∈{1}

yk +
∏

k∈{1,2}
xk

∏
k∈∅

yk

∑
I∈P(J1,2K)

∏
k∈I

xk

∏
k∈Ic

yk = 1.y1y2 + x1y2 + x2y1 + x1x2.1

Donc,

2∏
k=1

(xk + yk) =
∑

I∈P(J1,2K)

∏
k∈I

xk

∏
k∈Ic

yk

Pour les premières valeurs de n, la formule est vraie.

Démonstration informelle par dénombrement

On considère la quantité
n∏

k=1
(xk + yk).

Elle se réécrit, de manière informelle :



n∏
k=1

(xk + yk) = (x1 + y1) × (x2 + y2) × ... × (xn + yn)

Comment obtient-on un terme du produit sous forme développée ?

Dans chaque parenthèse il faut choisir un terme et multiplier entre eux les termes
choisis.

Par exemple,
Dans la première parenthèse on choisit x1.
Dans la deuxième parenthèse on choisit y2.

. . .

Dans la dernière parenthèse on choisit yn.
Ce processus de n étapes multiplicatives (chaque étape correspond au choix d’un facteur
dans un produit), permet d’obtenir un terme du produit écrit sous forme développée :

x1 × y2 × ... × yn

Le développement final ressemble ainsi à :

(x1+y1)×(x2+y2)×...×(xn+yn) = x1x2×· · ·×xn−1xn+y1x2×· · ·×xn−1xn+· · ·+y1y2×· · ·×yn−1yn

Combien de produits avons-nous ?

En fait, on a n étapes multiplicatives et à chaque étape k ∈ J1, nK du processus, on a 2
possibilités :

le produit contient xk ou le produit contient yk.
Les choix à chaque étapes étant indépendants, d’après le principe multiplicatif, on
obtient 2n produits de n termes.

Voici une illustration de l’obtention de tous les facteurs dans le cas n = 3 :

Choix 1
x1 ou y1

Choix 2
x2 ou y2

Choix 3
x3 ou y3

x1x2x3 x1x2y3

Choix 3
x3 ou y3

x1y2x3 x1y2y3

Choix 2
x2 ou y2

Choix 3
x3 ou y3

y1x2x3 y1x2y3

Choix 3
x3 ou y3

y1y2x3 y1y2y3



On retrouve bien 23 = 8 produits de 3 termes différents.

Comment écrire tous ces produits sous un symbole ∑ ?
Le fait qu’il y ait 2n produits n’est pas anodin. C’est le cardinal de l’ensemble des parties
de J1, nK. Il existe donc au moins un moyen d’associer une unique partie de J1, nK à chaque
produit obtenus en développant. Analysons notre construction pour exhiber cette bijection.

Pour chaque terme du développement, on a effectué un choix à chaque étape k ∈ J1, nK,
consistant à prendre soit xk, soit yk. Ce choix peut être modélisé par un sous-ensemble
I ⊂ J1, nK, où :

— k ∈ I signifie que l’on a choisi xk,
— k /∈ I signifie que l’on a choisi yk.

Ainsi, chaque terme du développement est de la forme :∏
k∈I

xk

∏
k∈Ic

yk

pour un certain sous-ensemble I ⊂ J1, nK.
On a ainsi trouvé une bijection naturelle entre les éléments de P(J1, nK) et les 2n produits
apparaissants dans le développement de ∏n

k=1(xk + yk) :

I 7→
∏
k∈I

xk

∏
k∈Ic

yk

Pour obtenir tous les termes du développement, il suffit donc de sommer sur l’ensemble des
parties de J1, nK et l’on obtient l’expression :

n∏
k=1

(xk + yk) =
∑

I∈P(J1,nK)

∏
k∈I

xk

∏
k∈Ic

yk

Démonstration formelle par récurrence

Pour démontrer rigoureusement la formule
n∏

k=1
(xk + yk) =

∑
I∈P(J1,nK)

∏
k∈I

(xk)
∏

k∈Ic

(yk)

on peut penser à effectuer un raisonnement par récurrence.
En effet,

-le produit est indexé de 1 à n avec n un entier naturel,
-le lien entre la formule aux rangs n + 1 et n est facilement effectué :

n+1∏
k=1

(xk + yk) = (xn+1 + yn+1) ×
n∏

k=1
(xk + yk)



-les cas n = 1 ou n = 2 ont été vérifiés sans difficulté.
Considérons pour tout n ∈ N∗ la propriété P(n) définie par :

P(n) = « ∀((x1, . . . , xn), (y1, . . . , yn)) ∈ Rn × Rn
n∏

k=1
(xk + yk) =

∑
I∈P(J1,nK)

∏
k∈I

(xk)
∏

k∈Ic

(yk) »

Démontrons par récurrence que P(n) est vraie pour tout n ∈ N∗.
L’initialisation (le cas n = 1) a déjà été verifiée.
Hérédité : Soit n ∈ N∗ Supposons P(n). Montrons P(n + 1).
Soit (x1, . . . , xn+1) ∈ Rn+1 et (y1, . . . , yn+1) ∈ Rn+1.

n+1∏
k=1

(xk + yk) = (xn+1 + yn+1) ×
n∏

k=1
(xk + yk)

D’après P(n),
n∏

k=1
(xk + yk) =

∑
I∈P(J1,nK)

∏
k∈I

(xk)
∏

k∈Ic

(yk)

Donc

n+1∏
k=1

(xk + yk) = (xn+1 + yn+1) ×
∑

I∈P(J1,nK)

∏
k∈I

(xk)
∏

k∈Ic

(yk)

On distribue la somme sur xn+1 et yn+1 et on utilise la linéarité de la somme :

n+1∏
k=1

(xk + yk) =
∑

I∈P(J1,nK)
xn+1

∏
k∈I

(xk)
∏

k∈Ic

(yk) +
∑

I∈P(J1,nK)
yn+1

∏
k∈I

(xk)
∏

k∈Ic

(yk)

Pour tout I ∈ P , (J1, nK) xn+1
∏
k∈I

(xk) =
∏

k∈I∪{n+1}
(xk) et par commutativité de × :

yn+1
∏
k∈I

(xk)
∏

k∈Ic

(yk) =
∏
k∈I

(xk)yn+1
∏

k∈Ic

(yk) =
∏
k∈I

(xk)
∏

k∈Ic∪{n+1}
(yk)

Donc

n+1∏
k=1

(xk + yk) =
∑

I∈P(J1,nK)

∏
k∈I∪{n+1}

(xk)
∏

k∈Ic

(yk) +
∑

I∈P(J1,nK)

∏
k∈I

(xk)
∏

k∈Ic∪{n+1}
(yk)

A présent, il suffit de prouver que le terme de droite est
∑

I∈P(J1,n+1K)

∏
k∈I

(xk)
∏

k∈Ic

(yk).



On doit le mettre en évidence en transformant l’écriture des sommes.

Examinons la 1ère somme du développement de
n+1∏
k=1

(xk + yk).

Soit I ∈ P(J1, nK).
Comme Ic ⊂ J1, nK, on a Ic ∩ {n + 1} = ∅.
Donc Ic ⊂ {n + 1}c.
D’après les lois de De Morgan,

Ic = Ic ∩ {n + 1}c = (I ∪ {n + 1})c

La première somme se réécrit :
∑

I∈P(J1,nK)

∏
k∈I∪{n+1}

(xk)
∏

k∈Ic

(yk) =
∑

I∈P(J1,nK)

∏
k∈I∪{n+1}

(xk)
∏

k∈(I∪{n+1})c

(yk)

On effectue le changement de variable J = I ∪ {n + 1} (bijection entre les parties de J1, nK
et les parties de J1, n + 1K) qui contiennent n + 1) :

∑
I∈P(J1,nK)

∏
k∈I∪{n+1}

(xk)
∏

k∈(I∪{n+1})c

(yk) =
∑

J∈P(J1,n+1K)
n+1∈J

∏
k∈J

xk

∏
k∈Jc

yk

Examinons la 2ème somme.
Soit I ∈ P(J1, nK).
De la même façon que pour la 1ère somme, on a I ⊂ {n + 1}c.
Donc

I = I ∩ {n + 1}c = I \ {n + 1}

De plus d’après les lois de De Morgan,

Ic ∪ {n + 1} = ((Ic ∪ {n + 1})c)c = (I ∩ {n + 1})c = I \ {n + 1}

La deuxième somme se réécrit :
∑

I∈P(J1,nK)

∏
k∈I

(xk)
∏

k∈Ic∪{n+1}
(yk) =

∑
I∈P(J1,nK)

∏
k∈I\{n+1}

(xk)
∏

k∈(I\{n+1})c

(yk)

Effectuons le changement de variable J = I \ {n + 1} (bijection entre les parties de J1, nK)
et les parties de J1, n + 1K) qui ne contiennent pas n + 1) :∑

I∈P(J1,nK)

∏
kI∈\{n+1}

(xk)
∏

k∈(I\{n+1})c

(yk) =
∑

J∈P(J1,n+1K)
n+1/∈J

∏
k∈J

(xk)
∏

k∈Jc

(yk)

Donc on obtient l’égalité :

n+1∏
k=1

(xk + yk) =
∑

J∈P(J1,n+1K)
n+1∈J

∏
k∈J

xk

∏
k∈Jc

yk +
∑

J∈P(J1,n+1K)
n+1/∈J

∏
k∈J

(xk)
∏

k∈Jc

(yk)



Dans la première somme on a toutes les parties de J1, n + 1K qui contiennent n + 1 et dans la
deuxième toutes les parties de J1, n + 1K qui ne contiennet pas n + 1. On a donc toutes les
parties de J1, n + 1K. On peut conclure que :

n+1∏
k=1

(xk + yk) =
∑

J∈P(J1,n+1K)

∏
k∈J

xk

∏
k∈Jc

yk

P(n + 1) est vraie.
La propriété est vraie au rang 1 et héréditaire à partir de ce même rang, d’après le principe
de récurrence, elle est vraie pour tout entier naturel n non nul.

Remarque finale
Les éléments que l’on a manipulé (les (xi)i∈J1,nK) sont des réels mais l’on a seulement utilisé
(implicitement) les propriétés d’anneau commutatif de (R, +, ×). Ainsi, l’égalité reste
vraie dans n’importe quel anneau commutatif (A, +, ×) comme (C, +, ×) ou l’anneau des
polynômes (A[X], +, ×) à coefficients dans un anneau commutatif (A, +, ×).

Résumé des preuves

Preuve 1 : Dénombrement
1) Réécrire

n∏
k=1

(xk + yk) = (x1 + y1) × (x2 + y2) × ... × (xn + yn)

2) Compter le nombre d’élements quand on développe : 2n produits de n termes.
3) On cherche un lien avec P(J1, nK) qui est de cardinal 2n

3) On se rend compte que construire un des 2n produits revient au choix d’une partie I de
J1, nK par cette bijection :

I 7→
∏
k∈I

xk

∏
k∈Ic

yk

4) On somme la quantité
∏
k∈I

xk

∏
k∈Ic

yk sur l’ensemble des parties de J1, nK pour obtenir les 2n

produits du développement de (x1 + y1) × (x2 + y2) × ... × (xn + yn) :

(x1 + y1) × (x2 + y2) × ... × (xn + yn) =
∑

I∈P(J1,nK)

∏
k∈I

(xk)
∏

k∈Ic

(yk)

Preuve 2 : Récurrence
1) On pose la propriété :

P(n) = « ∀((x1, . . . , xn), (y1, . . . , yn)) ∈ Rn × Rn
n∏

k=1
(xk + yk) =

∑
I∈P(J1,nK)

∏
k∈I

(xk)
∏

k∈Ic

(yk) »

2) On initialise la récurrence à n = 1 en vérifiant :



1∏
k=1

(xk + yk) =
∑

I∈P(J1,1K)

∏
k∈I

(xk)
∏

k∈Ic

(yk)

3) On prouve l’hérédité de la propriété. On suppose P(n) et on montre P(n + 1).
4) On part de :

n+1∏
k=1

(xk + yk) = (xn+1 + yn+1) ×
n∏

k=1
(xk + yk)

5) On utilise P(n), on distribue et on réécrit l’indexation des produits pour arriver à :

n+1∏
k=1

(xk + yk) =
∑

I∈P(J1,nK)

∏
k∈I∪{n+1}

(xk)
∏

k∈Ic

(yk) +
∑

I∈P(J1,nK)

∏
k∈I

(xk)
∏

k∈Ic∪{n+1}
(yk)

6) Dans la somme de gauche on fait le changement de variable J = I ∪ {n + 1} pour montrer
qu’on a toutes les parties de J1, n + 1K qui contiennent n + 1.
7) Dans la somme de droite on fait le changement de variable J = I \ {n + 1} pour montrer

qu’on a toutes les parties de J1, n + 1K qui ne contiennent pas n + 1.
8) On a donc sommé sur toutes les parties de J1, n + 1K la quantité

∏
k∈I

(xk)
∏

k∈Ic

(yk) ce qui

donne

n+1∏
k=1

(xk + yk) =
∑

J∈P(J1,n+1K)

∏
k∈J

xk

∏
k∈Jc

yk

9) L’hérédité est prouvée ce qui termine la preuve grâce au principe de récurrence.


