Enoncé

Déterminer la limite puis un équivalent de la suite définie par récurrence :

ug > 0
Upt1 = Up + €

Correction

1) La suite récurrente est-elle bien définie ?

Deés qu’on a une suite définie par récurrence on doit s’assurer de la bonne définition de celle-ci.
R—R

T Tt+e”
sur R et a valeurs dans R, la suite est bien définie. En d’autres termes, peu importe le rang n,
on peut toujours calculer f(u,) afin de connaitre 1.

Ici, si on pose f := on a pour tout n € N wu, 1 = f(u,). Comme f est définie

Remarque :
L’exercice peut vite se compliquer si la fonction f n’est pas définie sur R. Notons Dy C R son
ensemble de définition.
La démarche a suivre est la suivante :
Il faut trouver I C Dy qui contient uy et qui est stable par f i.e f(I) C I. Ceci permet
d’assurer la bonne définition de la suite. En effet, a chaque rang n, on a w, € I C Dy ce qui
permet de recalculer u, 1 = f(u,).

Propriétés de la suite

Avant de s’intéresser a la potentielle limite de la suite, c’est toujours une bonne idée de
s'intéresser aux propriétés de la suite : signe constant? majorations, minorations
immeédiates 7 monotonie ? expression en fonction de n ? limite ?

Positivité

Nous disposons de I'inclusion f(R%) C R%. En effet, une somme de deux termes strictement
positifs est strictement positive. La suite (u,)nen est donc strictement positive.

YneN wu, >0

Raisonner directement sur f nous a évité la rédaction d’une récurrence triviale.



Croissance

Soit n € N.
On a par définition de la suite,

—Un

Up4+1 — Up = €

Comme —u, # 0, e~"* > 0. Ainsi,

Upy1 — Uy >0

La suite (uy)nen est strictement croissante. Elle admet donc une limite dans R U {+o0} et
méme dans R, U {+oo} car elle est positive.

2) Divergence vers +0oo

Supposons qu’elle converge vers une limite [ € R, . Par continuité de f en I, (f(u,))nen tend
vers f(1). (tns1)nen tend aussi vers [ car c’est une suite extraite de (u,)nen. Dans I'égalité

Vn €N w1 = fluy)

On peut passer a la limite pour obtenir

I=fl)el=lte's|le!=0]

L’équation e=! = 0 n’a pas de solution réelle. Donc I'hypothése de convergence de (uy,)nen est
absurde. En définitive,

Uy — +00
n—4o0o

3) Etude asymptotique de la suite
Présentation des méthodes

Il existe deux méthodes classiques qui ne s’inventent pas pour obtenir un équivalent d’une
suite récurrente d’ordre 1. Le but de ces méthodes est de trouver une fonction g aux "bonnes
propriétés" ainsi que [ € R* tels que :

g(um—l) - g(un) n;\jroo [

Les bonnes propriétés de g sont la pour justifier la suite des calculs.
1) On justifie que 'on peut sommer cette relation de comparaison pour obtenir :

n—1 n—1
Y guryr) —glug) ~ 1
=0 n—-+00 =0

n—-+o00 g(uo)€o(n.l) n—+00



2) On justifie que 1'on peut en déduire un équivalent de u,, :

Up ™~ gil(nl)

n—-+o0o

Dans les cas les plus délicats au lieu de trouver [ € R*, on trouve une suite (v,),en (dont
I'expression ne dépend pas de u,,) telle que :

9(tng1) — g(un) ~ v,

n—-+o0o

Cela complique les calculs. Notamment lors de la sommation des relations d’équivalences ou

il faut déterminer la nature de » v, (convergente ou divergente).
neN

méthode des puissances

La premiere méthode consiste a prendre pour fonction g une fonction puissance x —
avec o # 0. On étudie alors la différence w5, ; — uy; et on cherche o pour lequel il existe
[ € R* tel que

o (e}
U —u ~
n+l n n—-+oo

L’avantage des fonctions puissances est qu’elles se comportent bien avec les équivalents.
Expliquons ce que cela signifie.
En général, lorsque

(7 ~ v
n n—-+0o00 n

on ne peut pas en déduire, pour une fonction h quelconque

La composition a gauche par h ne conserve par la relation d’équivalence.
Voici un contre-exemple :

n+1 ~ n mais "' < "
n—-+oo n—-+4oo
En effet,
+1
671
=e ye#£ 1
en n—+00

Avec les fonctions puissances on peut composer par la gauche les relations d’équivalence,

Vo eR* w, ~ v, & u¥ ~ v

n—-+00

Donc quand on arrive a ’équivalent :

On peut en déduire :



(un))s ~ (al) & |u, ~ (nl)a

n—-+o0o n—-+o0o

Il faut noter que parfois, il n’existe pas de a # 0 tel que

(03 [0
Up g — Uy~ ]
n+l1 " pn—4o00
La méthode des puissances est alors infructueuse. La méthode de I'équation différentielle,
moins connue, est plus générale.

méthode de I’équation différentielle

La deuxieme méthode consiste a rapprocher la relation de récurrence qui définit la suite a
une équation différentielle. C’est une heuristique permettant de trouver un bon candidat
pour la fonction g de la section présentation des méthodes.

Voici comment s’y prendre :

Supposons qu’il existe une fonction élémentaire h telle que u,, ~ h(n). On suppose que h
n——+0o0

possede toutes les bonnes propriétés permettant de justifier les calculs qui vont suivre.

Soit n € N.

D’apres le théoreme des accroissements finis appliqué sur [n, n+ 1], on dispose de ¢, €|n,n+1]

tel que

o un+1 — Up o / —~ /
Un-+1 Un = (n —+ 1) —n accroissen?ents finis h (Cn) n—::-oo h (n)

Donc

Ungt = Un R h'(n)

Le fait d’assimiler la différence u,11 — u, a la dérivée d’une fonction est a la base de la
méthode de 1’équation différentielle. On utilise systématiquement ce parallele.

L’idée est de faire apparaitre cette différence. Ici c’est facile car 'expression de la relation
de récurrence le permet immédiatement. Sinon, on doit forcer cette apparition en faisant par
exemple un développement limité de u,,; en fonction de wu,. Nous illustrerons cette idée dans
un prochain exercice.

Enfin, si I'on fait tendre n vers +o00 dans

Up41 — Un = e

En utilisant e % =~ e 9" on se retrouve avec
n——+00

g(n) ~ e

¢ n).ef™ ~ 1

n—oo

g est solution au voisinage de +o0o de ’équation différentielle :



y'el =1
On peut réecrire cette égalité :
() =1
En réutilisant 'analogie dérivée/différence de deux termes consécutifs dans I'autre sens,

eIt _ o9(n)
n—oo

Qui se réécrit,

e'rtt — e o~ 1]

~
n—o0

Ainsi, I’heuristique nous suggere d’étudier la quantité e+ — e~ et I'on devrait trouver

elntl — glin —>+1 . La fonction g de la section présentation des méthodes est donc
n—-+0o0

I’exponentielle.

Application infructueuse de la méthode des puissances

On applique a la lettre la méthode 1 pour voir ce que cela donne ici.
Soit a € R et n € N.

—Unp

(&

Un1 = Uy = (Un + €)= = ug (1 +

) = 1)

un
On utilise la formule (1 + z)* =, L taz+ o(z),
z—

—Un —Un

+ o(

Unp Unp

)—1)

ey o«
Upiq — Uy _un(1+a

«@ o a—1_—u a—1 _—u
Up g — Upy = up™ e " 4 o(u,* e ")

«@ (e a—1_—un
Uu — U ~ u e
n+l " n—4oo0 "

Peu importe la valeur de «, par croissance comparée, le terme de droite tend vers 0. La
méthode des puissances n’aboutit pas.

4) Application de la méthode de I’équation différentielle

Etudions, comme suggéré par I’heuristique, la quantité e“»+1 — e"» pour n € N.
Soit n € N.

eun+1 _ eun — eun“‘e_un _ eun



La limite quand n tend vers +oco de cette quantité est indéterminée car de la forme 400 — 400.
Factorisons par e"" pour essayer de lever cette indétermination.

—Un —Uun
el — glin = eUnte T _glin = gtn (e " — 1)

U, — +0o donc e ** —— 0.
n—4o0o n—40oc

Effectuons alors un développement limité a I'ordre 1 de I’exponentielle en O :

—un — —
e " =1+e " +o(e ") quelon peut remplacer dans e“ tt — e

Y

eintt —eln = e (1 +e " 4 o(e ") —1)

& ettt — et =14 0(1)

Ce qui se réécrit,

ettt —e" — 51 ou e“ftl —e"r ~ 1
n—-+4oo n—-+o00

A partir de cette différence télescopique, il y a deux fagons de trouver un équivalent de e"".

5) léere méthode : Sommation des relations de comparaison

Appliquons un théoreme de sommation des relations de comparaison :

La suite constante (1),en est positive et Z 1 diverge grossierement. D’apres le théoreme de

neN
sommation des relations d’équivalences,

n——+00

n—1 n—1
Yoo S
k=0 k=0
(Ici j’ai pris la somme jusqu’a n — 1 en anticipant pour tomber sur e*" apres le télescopage).

Se'm—e" ~ n
n—-+o0o

e € o(e"") car c’est une constante donc négligeable devant e'» I +00.
n—-+0o0

Sle ~ n
n—-+oo




2éme méthode : Application du théoréme de Cesaro

La suite (et — "), en converge 1. D’apres le théoreme de Cesaro,

1 n—1

— Z R |

n =0 n—-+o0o
1 U uQ
—(e" —e — 1
n n——+oo

Comme fe® — 0, Finalement
n n—+o00

6) Déduction d’un équivalent de u,

Arrivé a cette étape, on a qu'une envie c¢’est d’appliquer [n pour avoir successivement

e~ n = In(e") ~ In(n) = u, ~ lIn(n)

n—-4o0o n—4o00o n—400

Justifions que 1'on a le droit de faire cela en démontrant, plus généralement, que le In se
comporte bien avec les équivalents sauf en 1.

Démonstration :
Soit (z5)nen € (RN et (yn)nen € (R)N deux suites équivalentes avec (yy,)neny n'ayant pas 1
pour valeur d’adhérence.

Montrons que In(z,,) et In(y,).

Soit n € N.

In(z,)  In(x,) = In(y,) + In(yn)

In(yn,) In(yn,)

On a effectué un classique "ajouté/retranché" pour forcer 'apparition de la quantité z—: pour
laquelle on a des informations.

Par continuité de In en 1,

On a méme,



Ensuite, comme 1 n’est pas valeur d’adhérence de (y,)nen, 0 n’est pas valeur d’adhérence de
(In(yn))nen- On dispose donc de € € R¥ ainsi que d'un rang N, € N & partir duquel :

VneN n>N.=|ln(y,)| > ¢

Supposons par la suite que n > N..
On en déduit, par stricte décroissance de la fonction inverse,

] < o]

In(yn) In(e)
Finalement, en multipliant par |in(3=)| > 0,

(), _ (2

Tt = Vi)

Le membre de droite tendant vers 0 quand n tend vers +oco, d’apres le théoreme d’encadrement,

In(%z)
| =0
ln(yn> n—0
Donc l ( )
In(x,) n ;j*"
= w4 0+ 1
nyn) ~ Tnly) T e 0T
In(x,)
& —— 1 < |in(z,) ~ In(yn)

ln(yn) n——+o0o n——+o0o

Dans notre cas particulier,
(Yn)nen = (n)nen est postive a partir du rang 1 et n’admet pas 1 pour valeur d’adhérence.
Donc,

Résumé de la preuve

1) On vérife que (u,)en existe et on étudie ses propriétés de base : positive, croissante.
2) On montre par 'absurde qu’elle diverge vers +cc.
3) On étudie la quantité e“»+! — e suggérée par la méthode de 1'équation différentielle.
4) En faisant un DL : et — et~ 1.
n—-+0o00
5) On somme les équivalents pour trouver : e
)

Un

~ n.
n——+o0o

6) On applique le [n dans I’équivalent (licite ici) : |u, o~ In(n)




