
Énoncé

Déterminer la limite puis un équivalent de la suite définie par récurrence :{
u0 > 0
un+1 = un + e−un

Correction

1) La suite récurrente est-elle bien définie ?

Dès qu’on a une suite définie par récurrence on doit s’assurer de la bonne définition de celle-ci.

Ici, si on pose f :=
{

R → R
x 7→ x + e−x on a pour tout n ∈ N un+1 = f(un). Comme f est définie

sur R et à valeurs dans R, la suite est bien définie. En d’autres termes, peu importe le rang n,
on peut toujours calculer f(un) afin de connaître un+1.

Remarque :
L’exercice peut vite se compliquer si la fonction f n’est pas définie sur R. Notons Df ⊂ R son
ensemble de définition.
La démarche à suivre est la suivante :
Il faut trouver I ⊂ Df qui contient u0 et qui est stable par f i.e f(I) ⊂ I. Ceci permet
d’assurer la bonne définition de la suite. En effet, à chaque rang n, on a un ∈ I ⊂ Df ce qui
permet de recalculer un+1 = f(un).

Propriétés de la suite

Avant de s’intéresser à la potentielle limite de la suite, c’est toujours une bonne idée de
s’intéresser aux propriétés de la suite : signe constant ? majorations, minorations
immédiates ? monotonie ? expression en fonction de n ? limite ?

Positivité

Nous disposons de l’inclusion f(R∗
+) ⊂ R∗

+. En effet, une somme de deux termes strictement
positifs est strictement positive. La suite (un)n∈N est donc strictement positive.

∀n ∈ N un > 0

Raisonner directement sur f nous a évité la rédaction d’une récurrence triviale.



Croissance

Soit n ∈ N.
On a par définition de la suite,

un+1 − un = e−un

Comme −un ̸= 0, e−un > 0. Ainsi,

un+1 − un > 0

La suite (un)n∈N est strictement croissante. Elle admet donc une limite dans R ∪ {+∞} et
même dans R+ ∪ {+∞} car elle est positive.

2) Divergence vers +∞

Supposons qu’elle converge vers une limite l ∈ R+. Par continuité de f en l, (f(un))n∈N tend
vers f(l). (un+1)n∈N tend aussi vers l car c’est une suite extraite de (un)n∈N. Dans l’égalité

∀n ∈ N un+1 = f(un)

On peut passer à la limite pour obtenir

l = f(l) ⇔ l = l + e−l ⇔ e−l = 0

L’équation e−l = 0 n’a pas de solution réelle. Donc l’hypothèse de convergence de (un)n∈N est
absurde. En définitive,

un −−−−→
n→+∞

+∞

3) Etude asymptotique de la suite

Présentation des méthodes

Il existe deux méthodes classiques qui ne s’inventent pas pour obtenir un équivalent d’une
suite récurrente d’ordre 1. Le but de ces méthodes est de trouver une fonction g aux "bonnes
propriétés" ainsi que l ∈ R∗ tels que :

g(un+1) − g(un) ∼
n→+∞

l

Les bonnes propriétés de g sont là pour justifier la suite des calculs.
1) On justifie que l’on peut sommer cette relation de comparaison pour obtenir :

n−1∑
k=0

g(uk+1) − g(uk) ∼
n→+∞

n−1∑
k=0

l

⇔ g(un) − g(u0) ∼
n→+∞

n.l ⇔
g(uo)∈o(n.l)

g(un) ∼
n→+∞

n.l



2) On justifie que l’on peut en déduire un équivalent de un :

un ∼
n→+∞

g−1(nl)

Dans les cas les plus délicats au lieu de trouver l ∈ R∗, on trouve une suite (vn)n∈N (dont
l’expression ne dépend pas de un) telle que :

g(un+1) − g(un) ∼
n→+∞

vn

Cela complique les calculs. Notamment lors de la sommation des relations d’équivalences où
il faut déterminer la nature de

∑
n∈N

vn (convergente ou divergente).

méthode des puissances

La première méthode consiste à prendre pour fonction g une fonction puissance x 7→ xα

avec α ̸= 0. On étudie alors la différence uα
n+1 − uα

n et on cherche α pour lequel il existe
l ∈ R∗ tel que

uα
n+1 − uα

n ∼
n→+∞

l

L’avantage des fonctions puissances est qu’elles se comportent bien avec les équivalents.
Expliquons ce que celà signifie.
En général, lorsque

un ∼
n→+∞

vn

on ne peut pas en déduire, pour une fonction h quelconque

h(un) ∼
n→+∞

h(vn)

La composition à gauche par h ne conserve par la relation d’équivalence.
Voici un contre-exemple :

n + 1 ∼
n→+∞

n mais en+1 ≁
n→+∞

en

En effet,

en+1

en
= e −−−−→

n→+∞
e ̸= 1

Avec les fonctions puissances on peut composer par la gauche les relations d’équivalence,

∀α ∈ R∗ un ∼
n→+∞

vn ⇔ uα
n ∼

n→+∞
vα

n

Donc quand on arrive à l’équivalent :

(un)α ∼
n→+∞

nl

On peut en déduire :



((un)α) 1
α ∼

n→+∞
(nl) 1

α ⇔ un ∼
n→+∞

(nl) 1
α

Il faut noter que parfois, il n’existe pas de α ̸= 0 tel que

uα
n+1 − uα

n ∼
n→+∞

l

La méthode des puissances est alors infructueuse. La méthode de l’équation différentielle,
moins connue, est plus générale.

méthode de l’équation différentielle

La deuxième méthode consiste à rapprocher la relation de récurrence qui définit la suite à
une équation différentielle. C’est une heuristique permettant de trouver un bon candidat
pour la fonction g de la section présentation des méthodes.

Voici comment s’y prendre :
Supposons qu’il existe une fonction élémentaire h telle que un ∼

n→+∞
h(n). On suppose que h

possède toutes les bonnes propriétés permettant de justifier les calculs qui vont suivre.
Soit n ∈ N.
D’après le théorème des accroissements finis appliqué sur [n, n+1], on dispose de cn ∈]n, n+1[
tel que

un+1 − un = un+1 − un

(n + 1) − n
=

accroissements finis
h′(cn) ≈

n→+∞
h′(n)

Donc
un+1 − un ≈

n→+∞
h′(n)

Le fait d’assimiler la différence un+1 − un à la dérivée d’une fonction est à la base de la
méthode de l’équation différentielle. On utilise systématiquement ce parallèle.
L’idée est de faire apparaître cette différence. Ici c’est facile car l’expression de la relation
de récurrence le permet immédiatement. Sinon, on doit forcer cette apparition en faisant par
exemple un développement limité de un+1 en fonction de un. Nous illustrerons cette idée dans
un prochain exercice.

Enfin, si l’on fait tendre n vers +∞ dans

un+1 − un = e−un

En utilisant e−un ≈
n→+∞

e−g(n), on se retrouve avec

g′(n) ≈
n→∞

e−g(n)

⇔ g′(n).eg(n) ≈
n→∞

1

g est solution au voisinage de +∞ de l’équation différentielle :



y′ey = 1

On peut réecrire cette égalité :

(ey)′ = 1

En réutilisant l’analogie dérivée/différence de deux termes consécutifs dans l’autre sens,

eg(n+1) − eg(n) ≈
n→∞

1

Qui se réécrit,

eun+1 − eun ≈
n→∞

1

Ainsi, l’heuristique nous suggère d’étudier la quantité eun+1 − eun et l’on devrait trouver
eun+1 − eun → 1

n→+∞
. La fonction g de la section présentation des méthodes est donc

l’exponentielle.

Application infructueuse de la méthode des puissances

On applique à la lettre la méthode 1 pour voir ce que cela donne ici.
Soit α ∈ R∗

+ et n ∈ N.

uα
n+1 − uα

n = (un + e−un)α − uα
n = uα

n((1 + e−un

un

)α − 1)

On utilise la formule (1 + x)α =
x→0

1 + αx + o(x),

uα
n+1 − uα

n = uα
n(1 + α

e−un

un

+ o(e−un

un

) − 1)

uα
n+1 − uα

n = un
α−1e−un + o(un

α−1e−un)

uα
n+1 − uα

n ∼
n→+∞

un
α−1e−un

Peu importe la valeur de α, par croissance comparée, le terme de droite tend vers 0. La
méthode des puissances n’aboutit pas.

4) Application de la méthode de l’équation différentielle

Etudions, comme suggéré par l’heuristique, la quantité eun+1 − eun pour n ∈ N.
Soit n ∈ N.

eun+1 − eun = eun+e−un − eun



La limite quand n tend vers +∞ de cette quantité est indéterminée car de la forme +∞−+∞.
Factorisons par eun pour essayer de lever cette indétermination.

eun+1 − eun = eun+e−un − eun = eun(ee−un − 1)

un −−−−→
n→+∞

+∞ donc e−un −−−−→
n→+∞

0.

Effectuons alors un développement limité à l’ordre 1 de l’exponentielle en 0 :

ee−un = 1 + e−un + o(e−un) que l’on peut remplacer dans eun+1 − eun ,

eun+1 − eun = eun(1 + e−un + o(e−un) − 1)

⇔ eun+1 − eun = 1 + o(1)

Ce qui se réécrit,

eun+1 − eun −−−−→
n→+∞

1 ou eun+1 − eun ∼
n→+∞

1

A partir de cette différence télescopique, il y a deux façons de trouver un équivalent de eun .

5) 1ère méthode : Sommation des relations de comparaison

Appliquons un théorème de sommation des relations de comparaison :
La suite constante (1)n∈N est positive et

∑
n∈N

1 diverge grossièrement. D’après le théorème de

sommation des relations d’équivalences,

n−1∑
k=0

euk+1 − euk ∼
n→+∞

n−1∑
k=0

1

(Ici j’ai pris la somme jusqu’à n − 1 en anticipant pour tomber sur eun après le télescopage).

⇔ eun − eu0 ∼
n→+∞

n

eu0 ∈ o(eun) car c’est une constante donc négligeable devant eun −−−−→
n→+∞

+∞.

⇔ eun ∼
n→+∞

n



2ème méthode : Application du théorème de Cesàro

La suite (eun+1 − eun)n∈N converge 1. D’après le théorème de Cesàro,

1
n

n−1∑
k=0

euk+1 − euk →
n→+∞

1

1
n

(eun − eu0) →
n→+∞

1

Comme 1
n
eu0 →

n→+∞
0, Finalement

1
n

eun →
n→+∞

1 ⇔ eun ∼
n→+∞

n

6) Déduction d’un équivalent de un

Arrivé à cette étape, on a qu’une envie c’est d’appliquer ln pour avoir successivement

eun ∼
n→+∞

n ⇒ ln(eun) ∼
n→+∞

ln(n) ⇒ un ∼
n→+∞

ln(n)

Justifions que l’on a le droit de faire cela en démontrant, plus généralement, que le ln se
comporte bien avec les équivalents sauf en 1.

Démonstration :
Soit (xn)n∈N ∈ (R∗

+)N et (yn)n∈N ∈ (R∗
+)N deux suites équivalentes avec (yn)n∈N n’ayant pas 1

pour valeur d’adhérence.
Montrons que ln(xn) ∼

n→+∞
ln(yn).

Soit n ∈ N.

ln(xn)
ln(yn) = ln(xn) − ln(yn) + ln(yn)

ln(yn)
On a effectué un classique "ajouté/retranché" pour forcer l’apparition de la quantité xn

yn
pour

laquelle on a des informations.

⇔ ln(xn)
ln(yn) =

ln(xn

yn
)

ln(yn) + 1

xn

yn

−−−−→
n→+∞

1 car xn ∼
n→+∞

yn

Par continuité de ln en 1,
ln(xn

yn

) −−−−→
n→+∞

ln(1) = 0

On a même,
|ln(xn

yn

)| −−−−→
n→+∞

0



Ensuite, comme 1 n’est pas valeur d’adhérence de (yn)n∈N, 0 n’est pas valeur d’adhérence de
(ln(yn))n∈N. On dispose donc de ε ∈ R∗

+ ainsi que d’un rang Nε ∈ N à partir duquel :

∀n ∈ N n > Nε ⇒ |ln(yn)| > ε

Supposons par la suite que n > Nε.
On en déduit, par stricte décroissance de la fonction inverse,

| 1
ln(yn) | < | 1

ln(ε) |

Finalement, en multipliant par |ln(xn

yn
)| ≥ 0,

|
ln(xn

yn
)

ln(yn) | ≤ |
ln(xn

yn
)

ln(ε) |

Le membre de droite tendant vers 0 quand n tend vers +∞, d’après le théorème d’encadrement,

|
ln(xn

yn
)

ln(yn) | →
n→0

0

Donc
ln(xn)
ln(yn) =

ln(xn

yn
)

ln(yn) + 1 −−−−→
n→+∞

0 + 1

⇔ ln(xn)
ln(yn) −−−−→

n→+∞
1 ⇔ ln(xn) ∼

n→+∞
ln(yn)

Dans notre cas particulier,
(yn)n∈N := (n)n∈N est postive à partir du rang 1 et n’admet pas 1 pour valeur d’adhérence.
Donc,

ln(eun) ∼
n→+∞

ln(n)

⇔ un ∼
n→+∞

ln(n)

Résumé de la preuve

1) On vérife que (un)n∈N existe et on étudie ses propriétés de base : positive, croissante.
2) On montre par l’absurde qu’elle diverge vers +∞.
3) On étudie la quantité eun+1 − eun suggérée par la méthode de l’équation différentielle.
4) En faisant un DL : eun+1 − eun ∼

n→+∞
1.

5) On somme les équivalents pour trouver : eun ∼
n→+∞

n.

6) On applique le ln dans l’équivalent (licite ici) : un ∼
n→+∞

ln(n)


