
Énoncé

On considère toujours la suite définie par récurrence :{
u0 > 0
un+1 = un + e−un

dont on rappelle les propriétés démontrées dans l’exercice
Développement asymptotique d’une suite récurrente d’ordre 1 :
1) (un)n∈N est positive, croissante et diverge vers +∞.
2) eun ∼

n→+∞
n et un ∼

n→+∞
ln(n).

Déterminer un développement asymptotique à l’ordre 2 de (un)n∈N.

Correction

Cet exercice est la suite naturelle après avoir déterminé un équivalent de (un)n∈N. La méthode
pour y parvenir est simple et systématique, nous la présentons dans cette correction.

Méthode pour poursuivre un développement asymptotique

1) Avoir obtenu un équivalent de (un)n∈N.
En général, il est nécessaire d’avoir d’abord un équivalent pour obtenir un développement
asymptotique à l’ordre 2. Cependant, dans certains cas on obtient directement un développe-
ment asymptotique à l’ordre 2 après avoir sommé les équivalents.

2) Etudier la quantité (eun+1 − (n + 1)) − (eun − n) et pousser le DL un cran plus loin.
Tout d’abord, on étudie la suite (eun)n∈N car c’est cette suite qui nous a permis d’obtenir en
premier lieu l’équivalent de un quand n → +∞. On rappelle que l’étude de cette suite avait
été suggérée par la méthode de l’équation différentielle. Ensuite, pour obtenir plus de
précision dans le développement asymptotique de eun , il faut trouver un équivalent de la suite
moins son équivalent : eun −n. Pour cela, on étudie la différence de deux termes consécutifs
(eun+1 − (n + 1)) − (eun − n), on en cherche un équivalent grâce à des développements limités
plus précis que ceux utilisés quand on avait déterminé un équivalent de eun+1 − eun dans
l’exercice Développement asymptotique d’une suite récurrente d’ordre 1.

3) En déduire un développement asymptotique à l’ordre 2 de un quand n → +∞.
Après avoir trouvé un équivalent de (eun+1 − (n + 1)) − (eun − n), il ne reste plus qu’à
sommer (si c’est possible) pour obtenir un équivalent de eun − n. Ceci fournit directement un
développement asymptotique à l’ordre 2 de eun . Enfin, il suffit de composer par ln et d’utiliser
son développement limité usuel en 1 pour avoir un développement asymptotique à l’ordre 2
de un.



Mise en oeuvre de la méthode

Soit n ∈ N.

2) Etude de (eun+1 − (n + 1)) − (eun − n).

Pour plus de lisibilité, posons pour tout n ∈ N, vn := eun − n. On utilise successivement la
relation de récurrence, une factorisation par eun et le fait que e−un → 0

n→+∞
:

vn+1 − vn = eun+1 − eun − 1 =
relation de récurrence

eun+e−un − eun − 1

⇒ vn+1 − vn =
factorisation

eun(ee−un − 1) − 1 =
DL de exp en 0

eun(1 + e−un + e−2un

2! + o(e−2un) − 1) − 1

Remarque :
Dans l’étape 2 de la méthode, quand j’ai écrit pousser le DL un cran plus loin, je faisais
référence à cette étape de calcul. Initialement pour obtenir l’équivalent de eun+1 − eun , j’avais
utilisé la formule ex = 1+x+ o

x→0
(x), ce qui était suffisant. Ici j’ai utilisé ex = 1+x+ x2

2 + o
x→0

(x2),
j’ai donc poussé le DL un cran plus loin. Si je m’étais arrêté à ex = 1 + x + o

x→0
(x), j’aurais

obtenu :

vn+1 − vn = eun(ee−un − 1) − 1 = eun(1 + e−un + o(e−un) − 1) − 1 = eun(e−un + o(e−un)) − 1

⇒ vn+1 − vn = 1 + o(1) − 1 = o(1)

vn+1 − vn = o(1)
Cette relation n’est pas assez précise pour conclure. En sommant cette relation ((1)n∈N est

positive et
∑
n∈N

1 diverge), on retrouve le résultat eun ∼
n→+∞

n. En effet,

vn+1−vn = o(1) ⇒
sommation

vn−v0 = o(
n−1∑
k=0

1) ⇒ vn = o(n) ⇔
def de vn

eun −n = o(n) ⇔ eun ∼
n→+∞

n

Fin de la remarque.

Reprenons nos calculs :

vn+1 − vn = eun(e−un + e−2un

2! + o(e−2un)) − 1

vn+1 − vn =
distribution de eun

1 + e−un

2 + o(e−un) − 1

vn+1 − vn = e−un

2 + o(e−un)



Donc

vn+1 − vn ∼
n→+∞

e−un

L’énoncé nous rappelle que : eun ∼
n→+∞

n, comme les équivalents se comportent bien avec
les puissances, on en déduit : 1

eun ∼
n→+∞

1
n
. Comme e−un = 1

eun , on a finalement :

vn+1 − vn ∼
n→+∞

1
n

3) Sommation des équivalents
La suite ( 1

n
)n∈N∗ est positive et la série ∑

n∈N∗
1
n

est divergente (série harmonique), d’après le
théorème de sommation des équivalents,

n−1∑
k=1

(vk+1 − vk) ∼
n→+∞

n−1∑
k=1

1
k

⇔
télescopage

vn − v1 ∼
n→+∞

n−1∑
k=1

1
k

⇔
v0∈o(vn)

vn ∼
n→+∞

n−1∑
k=1

1
k

On utilise ensuite le résultat classique

n−1∑
k=0

1
k

∼
n→+∞

ln(n − 1) ∼
n→+∞

ln(n)

(Le ln se comporte bien avec les équivalents en +∞, voir exercice Développement asymptotique
d’une suite récurrente d’ordre 1 ). Ceci donne par transitivité de ∼,

vn ∼
n→+∞

ln(n)

Donc en revenant à la définition de vn,

eun − n ∼
n→+∞

ln(n)

⇔ eun − n = ln(n) + o(ln(n))
n→+∞

⇔ eun = n + ln(n) + o(ln(n))
n→+∞

On a un développement asymptotique à deux termes de eun . On peut finalement en déduire
un développement asymptotique à deux termes de un. On compose par ln :

ln(eun) = ln(n + ln(n) + o(ln(n))
n→+∞

)

Idée importante : On factorise par le terme dominant dans le ln :

⇔ un = ln(n(1 + ln(n)
n

+ o( ln(n)
n

n→+∞

))) ⇔ un =
propriétés du ln

ln(n) + ln(1 + ln(n)
n

+ o( ln(n)
n

n→+∞

))



ln(n)
n

+o( ln(n)
n

n→+∞
) est une quantité qui tend vers 0 quand n tend vers +∞ (croissance comparée).

On peut donc utiliser le développement limité en 1 de ln : ln(1 + x) = x + o(x)
x→0

.

un = ln(n) + ln(n)
n

+ o( ln(n)
n

n→+∞

) + o( ln(n)
n

+ o( ln(n)
n

n→+∞

))

Comme o( ln(n)
n

+ o( ln(n)
n

n→+∞
)) ⊂ o( ln(n)

n
n→+∞

), on a finalement :

un = ln(n) + ln(n)
n

+ o( ln(n)
n

n→+∞

)

Remarque finale :
La méthode présentée ici permet de déduire de proche en proche un développement
asymptotique à n’importe quel ordre une fois que l’on connaît l’équivalent. Pour poursuivre
avec un développement asymptotique à l’ordre 3, il suffit de trouver un équivalent de (eun+1 −
(n + 1) − ln(n + 1)) − (eun − n − ln(n)) (car ln(n) est l’équivalent de eun − n). Une fois
l’équivalent trouvé et si les conditions le permettent, on somme les équivalents pour avoir un
équivalent de eun − n − ln(n) et enfin on écrit cette relation sous forme de développement
limité et on refait des calculs pour trouver un développement asymptotique à l’ordre 3 de un.

Résumé de la preuve

1) Trouver un équivalent de (eun+1 − (n + 1)) − (eun − n) :

(eun+1 − (n + 1)) − (eun − n) ∼
n→+∞

1
n

2) Sommer les équivalents (( 1
n
)n∈N∗ est positive et la série ∑

n∈N∗
1
n

est divergente) :

eun − n ∼
n→+∞

n−1∑
k=1

1
k

3) Utiliser
n−1∑
k=1

1
k

∼
n→+∞

ln(n) et réécrire 2) sous forme de développement limité :

eun = n + ln(n) + o(ln(n))
n→+∞

4) Composer par ln pour retomber sur un, factoriser par le terme dominant dans le ln et
utiliser le DL usuel de ln au bon ordre :

un = ln(n) + ln(n)
n

+ o( ln(n)
n

n→+∞

)


