
Énoncé

Soit E un R-espace vectoriel de dimension finie n ∈ N∗.
Montrer que E possède une infinité non dénombrable d’hyperplans.

Correction

Commençons par rappeler les définitions équivalentes d’un hyperplan :
— Le noyau d’une forme linéaire non nulle ;
— Un sous-espace vectoriel qui admet une droite pour supplémentaire ;
— Un sous-espace vectoriel de dimension n − 1, valable uniquement en dimension finie.

Vient naturellement la question suivante :

Quelle définition de l’hyperplan choisir pour traiter l’exercice ?

La dimension finie permet une représentation graphique d’un hyperplan. Représentons donc
un hyperplan H de R3.

Figure 1 – Hyperplan dans R3

Tout plan qui passe par l’origine et n’est pas confondu avec H est un hyperplan distinct de H.
En changeant l’angle que fait H avec le plan (Oxy), on obtient un nouvel hyperplan distinct.
Le changement d’angle pouvant être décrit par un paramètre continu, on obtient de cette
manière une infinité non dénombrable d’hyperplans.



Voici une illustration graphique de l’idée : on a augmenté l’angle que fait l’hyperplan avec Oxy
à chaque fois. On a ainsi deux nouveaux hyperplans construits selon le même processus
depuis H1.

Figure 2 – Hyperplans distincts

Idée :
Pour modéliser ce changement d’angle (mouvement à un degré de liberté), on aura besoin
d’une base de H1 disons (e1, e2) et on va modifier la direction de e2 à l’aide d’un paramètre
continu. Si e3 /∈ Vect(e1, e2), on peut considérer Vect(e1, e2 + λe3) où λ parcourt un ensemble
continu afin de générer une infinité non dénombrable d’hyperplan.

Génération d’une infinité d’hyperplans

On généralise l’idée donnée dans R3 à E.
Notons H l’ensemble des hyperplans de E.
E étant de dimension finie, on dispose d’une base (e1, . . . , en) de E.
Considérons H := Vect(e1, . . . , en−1) ∈ H.
Soit λ ∈ [0, 1].

1) Montrons que Hλ := Vect(e1, . . . , en−1 + λen) ∈ H.
(e1, . . . , en−1 + λen) est une famille de taille n − 1 et génératrice de Hλ.

Montrons qu’elle est libre.
Soit (a1, . . . , an−1) ∈ Rn−1 tels que

n−2∑
k=1

akek + an−1(en−1 + λen) = 0



⇔
n−2∑
k=1

akek + an−1.en−1 + an−1.λen = 0

Par liberté de (e1, . . . , en),

∀k ∈ {1, . . . , n − 1} ak = 0 et an−1.λen = 0
Tous les ak, k ∈ {1, . . . , n − 1} sont nuls donc la famille (e1, . . . , en−1 + λen) est libre.
(e1, . . . , en−1 + λen) est une famille libre et génératrice de Hλ donc c’en est une base. Cette
famille étant de taille n − 1, Hλ est de dimension n − 1 et c’est bien hyperplan de E.

2) Montrons que les Hλ, λ ∈ [0, 1] sont tous distincts.
Soit (λ, µ) ∈ [0, 1] tels que λ ̸= µ.

Pour montrer que Hλ ≠ Hµ, il suffit de montrer que Hλ ̸⊂ Hµ. Pour cela, on raisonne par
l’absurde et on montre que en−1 + λen /∈ Hµ (on sait déjà que en−1 + λen ∈ Hλ).
Supposons que en−1 + λen ∈ Hµ.
Par définition de Vect, on dispose de (a1, . . . , an−1) ∈ Rn−1 tels que :

en−1 + λen =
n−2∑
k=1

akek + an−1(en−1 + µen)

On met tous les termes du même côté et on les réorganise afin d’exploiter la liberté des
(e1, . . . , en−1) :

n−2∑
k=1

akek + (an−1 − 1)en−1 + (an−1µ − λ)en = 0

Par liberté de (e1, . . . , en−1),

∀k ∈ {1, . . . , n − 2} ak = 0 et an−1 = 1 et an−1µ = λ

Donc
λ = µ

C’est absurde.
Ainsi,

en−1 + λen /∈ Hµ et Hλ ̸⊂ Hµ

Donc

Hλ ̸= Hµ

Conclusion
L’application :

f :

[0, 1] −→ H
λ 7−→ Hλ

est injective

Comme [0, 1] est non dénombrable, H l’est aussi.



E possède une infinité non dénombrable d’hyperplans.

Remarque finale :
Cette preuve s’adapte facilement pour montrer les résultats suivants (toujours en dimension
finie) :

— Infinité non dénombrable d’espaces vectoriels de dimension k ∈ {1, . . . , n − 1}.
— Infinité non dénombrable de supplémentaires d’un espace vectoriel de dimension

k ∈ {1, . . . , n − 1}.

Résumé de la preuve

1) Soit une base (e1, . . . , en) de E, considérer pour λ ∈ [0, 1] Hλ := Vect(e1, . . . , en−1 + λen).
2) Montrer que Hλ est un hyperplan en montrant la liberté de (e1, e2, . . . , en−1 + λen).

3) Considérer f :

[0, 1] −→ H
λ 7−→ Hλ

où H est l’ensemble des hyperplans de E et montrer que

f est injective. Pour cela, montrer que si λ ̸= µ sont dans [0, 1], en−1 + µen ∈ Hµ \ Hλ en
raisonnant par l’absurde.
4) Conclure : H n’est pas dénombrable car [0, 1] qui n’est pas dénombrable s’injecte dans H.


