
Énoncé

Soit X une variable aléatoire discrète à valeurs dans R+ et ayant un moment d’ordre

deux. Soit a ∈]0, 1[. Montrer : P(X ≥ aE(X)) ≥ (1 − a)2 E(X)2

E(X2) .

Correction

L’inégalité est-elle bien définie ?

On commence par s’interroger sur la bonne définition des termes de cette inégalité.
En effet, une variable aléatoire n’admet pas forcément une espérance.
On note X(Ω) := {xn, n ∈ N} ⊂ R+ pour la suite.

Pour rappel, l’espérance d’une variable aléatoire discrète réelle X :

Ω → R
ω 7→ X(ω)

est

définie lorsque c’est possible par E(X) :=
∑
n∈N

xnP(X = xn). La série numérique mise

en jeu n’est pas nécessairement absolument convergente ou à termes positifs (qui est
le cadre dans lequel on se place pour parler de l’espérance d’une variable aléatoire).

Viennent donc naturellement ces questions : E(X) et E(X2) sont-ils bien définis ?
E(X2) ̸= 0 ? Dans l’énoncé, on a l’hypothèse "X a un moment d’ordre deux". Ceci
signifie que E(X2) existe et E(X2) ∈ R. (Comme X est réelle, X2 est à valeurs dans
R+ donc par positivité de l’espérance, on a même E(X2) ≥ 0).
Le fait que E(X2) ∈ R permet d’en déduire que E(X) existe et E(X) ∈ R.

En effet, on dispose de l’inégalité suivante :

∀x ∈ R |x| ≤ 1 + x2

Soit x ∈ R.
Pour la démontrer on utilise :

(1 − |x|)2 ≥ 0 ⇒ 1 − 2|x| + |x|2 ≥ 0 ⇒
|x|2=x2

1 + x2 ≥ 2|x| ⇒
2|x|≥|x|

1 + x2 ≥ |x|

On applique cette inégalité à xn, n ∈ N.
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∀n ∈ N |xn| ≤ 1 + x2
n

⇒ ∀n ∈ N |xn|P(X = xn) ≤ 1 · P(X = xn) + x2
nP(X = xn)

Comme P est une probabilité et X une variable aléatoire discrète, on a :

P(Ω) = P(X ∈ {xn, n ∈ N}) =
∑
n∈N

P(X = xn) = 1

et par hypothèse,

E(X2) =
formule de transfert

∑
n∈N

x2
nP(X = xn) ∈ R+

Par comparaison de familles sommables à termes positifs, (|xn|P(X = xn))n∈N est
sommable donc X admet une espérance réelle, E(X) ∈ R+.
On a démontré que E(X) et E(X2) étaient bien définis mais on ne sait pas si
E(X2) ̸= 0. En fait l’énoncé est incomplet car on peut très bien avoir une variable
aléatoire positive, admettant un moment d’ordre deux et d’espérance nulle.

Voici un exemple tout simple :
On considère l’espace probabilisable ({0, 1}, P({0, 1})) muni de la probabilité P définie
sur les événements élémentaires par :

P : x 7→

0 si x = 0
1 si x = 1

Autrement dit, P(0) = 0 et P(1) = 1.
({0, 1},P({0, 1}),P) est un espace probabilisé. On définit dessus la variable aléatoire

réelle discrète X :


{0, 1} → R

x 7→

10 si x = 0
0 si x = 1

Donc X(0) = 10 et X(1) = 0.
Alors X admet une espérance car elle est finie et l’espace probabilisé est fini,

E(X) = 10 · P(X = 10) + 0 · P(X = 0)
= 10 · P(0) + 0 · P(1) car {X = 10} := X−1(10) = 0 et {X = 0} := X−1(0) = 1

E(X) = 10 · 0 + 0 · 1 = 0
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Dans ces conditions, on démontre que la variable aléatoire est nulle presque sûrement
( P(X = 0) = 1). On ajoute donc l’hypothèse E(X) ̸= 0.
Après avoir vérifié que l’inégalité a un sens, nous allons la démontrer.

Recherche d’éléments du cours qui peuvent aider

Dans le cours de MP, on dispose d’une inégalité qui ressemble à cette inégalité,
l’inégalité de Markov :

∀a ∈ R∗
+ P(X ≥ a) ≤ E(X)

a

Seulement ici, l’inégalité est dans l’autre sens donc appliquer cette inégalité directe-
ment ne permet pas d’avancer dans la résolution de l’exercice.
On peut avoir une deuxième intuition :
la présence de termes quadratiques dans cette inégalité fait immédiatement penser à
l’inégalité de Cauchy-Schwarz :

∀X, Y ∈ L2 E2(XY ) ≤ E(X2)E(Y 2)

où L2 désigne l’ensemble des variables aléatoires de carré sommable. Il faudra sûrement
l’appliquer à un moment donné.
On voit qu’on ne peut pas appliquer directement l’inégalité de Markov ou de Cauchy-
Schwarz, il faut donc travailler un peu cette inégalité.

Étape 1 : Réécriture de l’inégalité

Idée importante
En probabilités, quand on a une inégalité à démontrer impliquant une espérance, on
peut essayer de l’exprimer uniquement en termes d’espérance mathématique.
On utilise pour cela la formule valable pour tout événement A de la tribu :

P(A) = E(1A)

On peut ainsi se ramener à démontrer une inégalité entre fonctions. En effet, si X
et Y sont deux variables aléatoires réelles discrètes alors si on veut montrer que
E(X) ≤ E(Y ) il est suffisant (mais pas nécessaire) de montrer que X ≤ Y car par
croissance de l’espérance, on aura E(X) ≤ E(Y ).
C’est sur cette idée que repose la démonstration de l’inégalité de Markov !
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Rappelons la démonstration pour illustrer ce propos.

Démonstration :
Soit a ∈ R∗

+ et X une variable aléatoire discrète positive qui admet une espérance
finie.
Soit ω ∈ Ω.
En distinguant selon que ω ∈ {X ≥ a} ou ω /∈ {X ≥ a}, on montre dans les deux
cas que

a1{X≥a}(ω) ≤ X(ω)
(On fait cette distinction pour pouvoir calculer 1{X≥a} et vérifier que l’inégalité est
tout le temps vraie).
On en déduit l’inégalité entre fonctions :

a1{X≥a} ≤ X

Par croissance de l’espérance,
(On peut calculer l’espérance de 1{X≥a} car X est une variable aléatoire donc {X ≥ a}
est un événement, dans le cas contraire l’espérance ne serait pas définie).

E(a1{X≥a}) ≤ E(X)
On utilise ensuite la linéarité de l’espérance pour sortir le a puis on divise de part et
d’autres par a > 0 et applique l’identité P({X ≥ a}) = E(1{X≥a}) pour tomber sur
l’inégalité de Markov :

P(X ≥ a) ≤ E(X)
a

Revenons à la démonstration :
Pour notre identité à démontrer P(X ≥ aE(X)) ≥ (1 − a)2 E(X)2

E(X2) , on réécrit le terme
de gauche avec une espérance et on passe le E(X2) > 0 de l’autre côté de l’inégalité
pour obtenir l’inégalité équivalente à démontrer :

E(X2)E(1{X≥aE(X)}) ≥ (1 − a)2E(X)2

Par linéarité de la fonctionnelle E,

⇔ E(X2)E(1{X≥aE(X)}) ≥ E((1 − a)X)2

(On a fait rentrer le (1-a) dans le carré puis le (1-a) dans l’espérance, c’est là que la
linéarité intervient.)
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Piste infructueuse

Sous cette nouvelle forme, on peut vouloir appliquer l’inégalité de Cauchy-Schwarz.
En effet, X et 1{X≥aE(X)} sont deux variables aléatoires admettant un moment d’ordre
deux.
De plus, comme 1{X≥aE(X)} ne prend ses valeurs que dans {0, 1} on a :

1{X≥aE(X)} = 12
{X≥aE(X)}

le terme de gauche de l’inégalité s’écrit :

E(X2)E(12
{X≥aE(X)})

D’après l’inégalité de Cauchy-Schwarz on obtient :

E(X2)E(12
{X≥aE(X)}) ≥ E(X1{X≥aE(X)})2

Si on montre l’inégalité entre fonctions :

X1{X≥aE(X)} ≥ (1 − a)X
alors on aura par croissance de l’espérance,

E(X1{X≥aE(X)}) ≥ E((1 − a)X)
Puis comme les termes mis en jeu sont positifs, on obtient par croissance de x 7→ x2

sur R+,
E(X1{X≥aE(X)})2 ≥ E((1 − a)X)2

D’où par transitivité :

E(X2)E(12
{X≥aE(X)}) ≥ E((1 − a)X)2

Ce qui est l’inégalité recherchée.
Malheureusement, l’inégalité X1{X≥aE(X)} ≥ (1 − a)X est fausse en général.

Contre-exemple :
Soit Ω = {0, 1} muni de la probabilité uniforme :

P(0) := 1
2 , P(1) := 1

2
et soit la variable aléatoire X définie par :

X(0) := 1, X(1) := 9
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Alors l’espérance de X est :

E(X) = 1
2 · 1 + 1

2 · 9 = 10
2 = 5

Prenons a := 9
10 alors

aE(X) = 9
10 · 5 = 9

2

On montre que X · 1{X≥aE(X)} ≥ (1 − a)X n’est pas vérifiée en ω = 0.

X(0) = 1 <
9
2 ⇒ 1{X≥aE(X)} = 0

À gauche on a :
X(0) · 1{X≥aE(X)}(0) = 1 · 0 = 0

À droite on a :
(1 − a)X(0) =

(
1 − 9

10

)
· 1 = 1

10
Or,

0 ̸≥ 1
10

Donc l’inégalité n’est pas vraie et la piste proposée n’aboutit pas.
On a seulement obtenu l’inégalité moins pratique :

E(X2)E(12
{X≥aE(X)}) ≥ E(X1{X≥aE(X)})

Pourquoi ça ne marche pas ?
Car en appliquant l’inégalité de Cauchy-Schwarz directement sur X, on perd de
l’information.

Étape 2 : Décomposer X

L’idée pour obtenir une inégalité plus précise est la suivante, on décompose X selon
l’événement {X ≥ aE(X)} :

X = X(1{X≥aE(X)} + 1{X≥aE(X)}c)

Comme {X ≥ aE(X)}c = {X < aE(X)},
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X = X1{X≥aE(X)} + X1{X<aE(X)}

On fait apparaître ainsi le terme X1{X≥aE(X)} de l’inégalité.
Ensuite pour se rapprocher de l’inégalité que l’on cherche, on voudrait se débarrasser
intelligemment du terme X1{X<aE(X)}.

Étape 3 : Majorer le terme X1{X<aE(X)} et prendre l’espérance

Pour cela, on dispose de l’inégalité entre fonctions :

X1{X<aE(X)} ≤ aE(X)

En effet, une simple disjonction de cas selon que ω ∈ Ω est tel que X(ω) < aE(X) ou
non permet de conclure.

Remarque
Cette inégalité n’est pas vraie en général, c’est la positivité de aE(X) qui la rend
vraie. En fait, dès que b ∈ R+ et X est une variable aléatoire, on a l’inégalité :

X1{X≤b} ≤ b

Cela nous donne :

X ≤ X1{X≥aE(X)} + aE(X)

Par croissance de l’espérance et en utilisant que l’espérance d’une fonction constante
est cette constante, on obtient :

E(X) ≤ E(X1{X≥aE(X)}) + aE(X)

Donc par linéarité de l’espérance,

E((1 − a)X) ≤ E(X1{X≥aE(X)})

Enfin comme les deux termes sont positifs, on passe au carré dans cette relation en
vue de l’application de l’inégalité de Cauchy-Schwarz :

E((1 − a)X)2 ≤ E2(X1{X≥aE(X)})
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Étape 4 : Appliquer l’inégalité de Cauchy-Schwarz

D’après l’inégalité de Cauchy-Schwarz :

E2(X1{X≥aE(X)}) ≤ E(X2)E(12
{X≥aE(X)})

Donc par transitivité,

E((1 − a)X)2 ≤ E(X2)E(12
{X≥aE(X)})

Finalement,

E(X2)E(1{X≥aE(X)}) ≥ E((1 − a)X)2

Résumé de la preuve

1) décomposer X selon l’événement mis en jeu dans l’indicatrice :

X = X(1{X≥aE(X)} + 1{X≥aE(X)}c)

2) Se débarrasser du terme gênant X1{X≥aE(X)}c via la majoration :

X1{X<aE(X)} ≤ aE(X)

3) Obtenir une inégalité dans 1) grâce à la majoration 2), appliquer l’espérance et
réorganiser l’inégalité obtenue :

E((1 − a)X) ≤ E(X1{X≥aE(X)})
4) Passer au carré dans la relation et appliquer l’inégalité de Cauchy-Schwarz au
membre de droite :

E((1 − a)X)2 ≤ E(X2)E(12
{X≥aE(X)})

5) Utiliser P({X ≥ aE(X)}) = E(12
{X≥aE(X)}) et diviser par E(X2) pour obtenir :

P(X ≥ aE(X)) ≥ (1 − a)2E(X)2

E(X2)
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