Enoncé

Soit X une variable aléatoire réelle positive d’espérance finie.
Montrer que :

P(X>2) = of2)

T——+00 x

Indication : Commencer par le cas ou X (€2) C N.

Correction

Analyse de I’énoncé

L’énoncé n’introduit pas d’espace probabilisé donc on suppose travailler sur (2, F, P) I'espace
probabilisé sur lequel X est définie.
Commencons par traduire ’énoncé et ses hypotheses.

La positivité :
YVwe X(w)>0

L’intégrabilité :
E(|X]) =E(X) < +o0

Remarque :
Quand la variable aléatoire est positive, E(X) est toujours bien définie dans R, U {+o00}.

Ce qu’il faut montrer :
Il faut montrer que P(X >z) = o(1), c’est-a-dire :

T—r—+00

>
PX22) ) o wP(X>2) — 0

r—r-+00 T—-+00

8] =

Idée :

Comparer P(X > z) et %, quand X est positive et x € R} fait immédiatement penser a
l’inégalité de Markov. A ce stade de la résolution, il n’est pas évident qu’il est nécessaire
de commencer par le cas X (€2) C N pour avancer dans la résolution.

Tentative de résolution directe avec I’inégalité de Markov

Soit x € RY.
X est positive et d’espérance finie donc d’apres I'inégalité de Markov,

E(X)

xz

P(X > ) <



Cette inégalité, valable pour tout x > 0, signifie exactement que

P(X >z) = O(l) car E(X) est un réel

r—+00 €x

L’inégalité obtenue est proche du résultat demandé mais manque de précision. Nous avons un
1 0 4 1

O(;) alors qu’il est demandé un o(+) quand x — +oo0.

On rencontre ici la premiere difficulté de I'exercice.

Ce qu’on pourrait se dire c’est que plutdt que de comparer P(X > z) a %, on peut peut-étre

comparer P(X > z) & une puissance de = comme 2. Ainsi on espére obtenir le o(1).

Voila comment on pourrait procéder.

Seconde tentative avec I’inégalité de Markov sur X2

Comme X est positive, les événements {X > z} et {X? > 2} sont égaux (car x — 2 est
une bijection de Ry dans lui-méme). Par conséquent, nous avons, toujours d’apres l'inégalité
de Markov (appliquée a X?),

E(X?)

xr2

P({X > 2}) = P({X* > 2%}) <

Ce qui donne
E(X?)

eP({X > z}) <

Cette inégalité est toujours vraie dans R U {+oo}. En effet, si le membre de droite est fini,
c’est 'inégalité de Markov classique et sinon c’est juste une inégalité entre +00 et un réel. Si
on avait E(X?) finie, alors on pourrait conclure que

PH{X >z}) — 0

T——+00

Malheureusement, admettre un moment d’ordre 1 n’implique pas d’avoir un moment d’ordre
2, donc cette piste ne permet pas de conclure.

Suivons 'indication donnée par ’énoncé en supposant X (€2) C N.

Etape 1 : Commencer par le cas X(Q) C N

Quel est le but de cette indication ?
On peut penser a deux choses.

lére intuition
Tout d’abord, cette indication peut nous mettre sur la piste d’une formule du cours reliant les
quantités E(X) et P(X > n) @ui est proche de P(X > ZL‘)), lorsque X (€2) C NU {+o0}.
Voici I'égalité, tres utile :

E(X) = 3. P(X 2 b)

k=1




2nd intuition
Sinon, le fait que X soit discrete et en plus & valeurs dans N permet d’exprimer simplement
P(X > x):
P(X > x) U {X =k}) (1)
k>:c ,keN
En considérant la partie entiére par exces de x notée [z] qui est le plus petit entier
supérieur ou égal a x, on peut écrire

P(X >z)=P( |J {X =k}
k>[z]
Car la seule fagon pour un entier k d’étre supérieur a x est d’étre supérieur a l'entier [z].

Attention
La partie entiere par exces n’est pas la partie entiere augmentée de 1! On peut s’en convaincre
en regardant [2] =2 et [2] =2 # 2] +1

Enfin, comme les événements qui composent I'union sont disjoints, par o-additivité,

P(X > x) Z P(X (2)

On pourra retenir cette écriture.

Notez bien que si X n’est pas discrete, on ne peut méme pas écrire (1). Les variables aléatoires
réelles discrétes sont un cadre tres particulier de la théorie des probabilités qui permet de
donner des expressions simplifiées a beaucoup d’objets comme ’espérance par exemple.

Nous allons proposer deux solutions. L’une prenant comme point de départ notre lere intuition

et I'autre issue de la 2nd intuition. Nous commencons par la 2nd intuition car la démonstration
est moins technique.

Etape 2 : Démonstration de 2P(X > z) — 0 grace a I’écriture

T—r+00
P(X > z) Z P(X
Fixons x € R,.
D’apres 1’égalité (2), nous pouvons écrire :
+oo
tP(X >z)=2 > PX =k)
k=[z]
+oo

= ¥ aP(X = k)

k=[z]



Cette somme n’est pas loin de l'expression de E(X) quand X (2) C N :

E(X) = Y KP(X =k)
kEX(Q)
=Y kP(X =k) (X(Q) CNetsik¢X(Q)P(X =k)=0doul'égalité des sommes)
keN

E(X) = iokIP’(X — k)

On pourra retenir la derniere égalité, qui ne dépend pas de 'intégrabilité de X. Ici, comme X

est intégrable, la série > kP(X = k) est convergente.
keN

Ce qu’il faut ensuite voir c’est que les deux quantités

+o0 oo
Y aP(X =k) et > kP(X =k)
k=[] k=0

peuvent étre reliées par une majoration triviale.

La premiere somme étant indexée sur les entiers k > [z] (avec [z] > z), on a évidemment
I'inégalité

2P(X = k) < kP(X = k). On injecte cette inégalité dans la somme,

+oo +oo
tP(X >x2)= Y 2P(X=k)< > kP(X =k)
k=[z] k=[z]
On a donc les inégalités
+oo
0 < aP(X>a2)< Y kP(X =k) (3)
positivité de P k=[z]

Si on montre que le membre de droite de (3) tend vers 0, on aura grace au théoréme
d’encadrement zP(X >z) — 0.

r—r-+00

Le membre de droite de (3) est le reste d’ordre [z] de la série Y nP(X = n) qui est par
neN
hypothése convergente. Donc

+o0
> kP(X =k) = 0 (4)
k=n nnGNOO
+o0o
Peut-on conclure directement & partir de (4) que Y kP(X = k) = 07
k=] Taer”

La réponse est oui.



“+o00

Il serait tentant ici de se dire que comme » kP(X = k) = 0 alors par extraction
n—-+00

k=n
+00
> KP(X =k) = 0. Seulement, cet argument est faux.
Pt T 00
“+o00 —+oco
< > kP(X = k)) n’est pas une suite extraite de <Z kP(X = k:)> . C’est une
k=[] TER+ k=n neN

fonction qui a pour ensemble de départ R, .
Nous allons étendre la limite d’une suite réelle en +00 a une fonction au voisinage de 400.

Voici comment procéder en 2 étapes.

L’inégalité [x] > x permet de conclure, d’apres le théoréme de divergence par minoration
que [x] T, oo

Ensuite, nous allons revenir a la définition de la limite d’une fonction pour montrer que la

+oo
fonction z — > kP(X = k) admet le réel 0 pour limite en +oo.
k=[z]

Fixons € € RY.
1) Par définition de la convergence, on dispose d'un rang N, € N tel que :

+oo
VneN n>N.= > kP(X=k)<e (5)
k=n

Comme [z] ol +00, on dispose d'un réel A, que 'on peut supposer supérieur a N, tel que

VeeR 2> A= [z] > N. (6)

2) Ainsi, comme [x] est toujours un entier, en cumulant les implications (5) et (6), on obtient
I’assertion

400
VeeR > A= Z EP(X =k)<e
k=[z]

Par définition de la limite d’une fonction en +o00, nous pouvons conclure que

io KP(X =k) — 0

k=[x T—>+00

Ce qui entraine, d’apres le théoreme d’encadrement et I'inégalité (3),

P(X>z) — 0

T—+00

Nous avons obtenu le résultat voulu lorsque X (€2) C N.



Idée :
Pour passer au cas X (§2) C Ry, nous allons utiliser la partie entiére de la variable aléatoire
X. C’est une bonne idée car | X | est une variable aléatoire intégrable telle que | X |(2) C N
donc on va pouvoir lui appliquer le résultat démontré. De plus, cette variable aléatoire encadre
X donc on peut espérer, peut-étre par un théoreme d’encadrement, prolonger le résultat
obtenu a X.

Etape 3 : Extension du résultat sur P(X > z) avec X(Q) ¢ N a P(X > ) avec
X(2) Cc Ry

Fixons z € Ry.
On a par définition de la partie entiere de X (notée [ X]),

X <X <[X]+1

Donc par décroissance de x — P(X > z) (preuve page 8-9),

P(LX] > 2) <P(X > 2) <P(|X]+1> 1)

= 0<2P(|X]>2) <zP(X >2) <z2P(|X]|+1>2) (7)

x>0

Examinons le membre de droite de I'inégalité.
| X | + 1 est une variable aléatoire positive et a valeurs dans N. Elle est intégrable en tant que
somme de variables aléatoires intégrables. En effet,

| X | est intégrable d’apres les inégalités

0<[X]<X

1 est également intégrable avec E(1) = 1.
On peut donc appliquer le résultat précédemment démontré :

2P X|+1>2) — 0

T—r—+00

D’apres (7), le théoreme d’encadrement donne :

P(X>x) — 0 et P(X>2) = 0(1)

- r—~+00 r—~+00 €T

]

A présent, redémontrons zP(X > ) — 0, dans le cas ou X(2) C N, en prenant pour

T—-+00
+oo

point de départ I'égalité E(X) =Y P(X > k). Cette démonstration utilise plus d’outils mais
k=1

constitue un point de départ naturel qui permet également de s’en sortir. Avant de commencer,

faisons quelques remarques sur cette formule.



Remarque :
En effectuant le changement d’indice ¢ = k — 1 dans la somme, on obtient

+00 “+oo
E(X) = S B(X > k) = S B(X > i+ 1)
k=1 i=0
Or comme X est a valeurs entieres,

VieN {(X>i+1}={X>i}= VieN P{X >i+1})=P{X >i})

Donc l'espérance se réécrit :
+00

E(X) = ZIP’(X > 1)
i=0
Cette derniere égalité a fait 'objet de la question 1 (sur 18 questions) du sujet de Mathéma-
tiques 1 MP 2024 du concours CCINP. La démonstration est proposée en trois étapes dans le
sujet et nécessite de montrer que

nP(X >n) — 0

n——+00
Le rapport du jury affirme que « La limite nP(X > n) a posé soucis alors qu'’il s’agit d’une
question de cours. ». Les candidats a ce concours se sont retrouvés en difficulté face a cette
question, qui est un cas particulier de I'exercice que nous avons traité ici.
La preuve généralement donnée en classe de MP est différente de celle proposée par le sujet
CCINP.
C’est une application du théoréme de Fubini sur les sommes doubles de réels positifs.

Revoyons cette preuve :

—+00
=> nP(X =
n=0
+oon—1 n—1
=> Y PX=n) car n=)1
n=0 k=0 k=0
“+00 400
=2 D> PX =n)ljen
n=0 k=0
400 400
= Z Z P(X = n)ljeny (Fubini sur la famille positive(P(X = n)l{k<n})(km)€NxN)
k=0n=0
400 +4oo

-3 ¥ Bx-

k=0n=k+1

E(X):iop()(>k) car f P(X =n)=P(X >k) O

k=0 n=k+1

Cette démonstration ne donne pas tellement d’idée sur comment démontrer le résultat
nP(X > n) = 0.

n—-+oo
Fin de la remarque.



Etape 2 : Démonstration de 2P(X > ) = 0 grace a D’écriture

E(Y) = Y P(X > &)

Nous avons deux propriétés sur la suite (P(X > n)),en.

1) positive (évident par positivité d'une probabilité).
2) décroissante on peut le montrer en disant que

VneN Vwe Xw)>n+l= X(w)>n

=VneN {(X>n+1} C{X >n}

et par croissance de la probabilité,
=VneN PH{X >n+1}) <PHX >n})

On peut aussi voir directement que (P(X > n)),en est décroissante grace a une intuition
probabiliste. On peut se dire qu’étre plus grand que n + 1 est plus exigeant qu’étre plus grand
que n donc cet événement a moins de chances d’arriver et P(X >n+1) <P(X >n) .

Etape 3 : Utilisation du théoréme d’Olivier

Ces 2 propriétés cumulées au fait que la série Z P(X > n) converge par hypothése permettent
neN
d’affirmer que

nP(X >n) — 0

n—-+o0o

Ce résultat hors programme est connu sous le nom de théoréme d’Olivier.

Voici son énoncé général :

Pour toute suite réelle (a,),en positive et décroissante telle que Z a, converge, on a
neN

na, — 0
n—-+0o00
Sa démonstration n’est pas facile mais tient en quelques lignes. Pour une démonstration, voir
par exemple Francinou, Gianella et Nicolas (2020), Orauz X-ENS mathématiques, vol. 3,
exercice 3.15 p.205.
On a donc obtenu que nP(X >n) — 0.

n—-+00

Analyse de la situation
Le probléeme est que la limite porte sur un parametre entier n et nous voudrions I’étendre a
un parametre continu z. Une idée dans ce genre de situations peut étre de faire intervenir la
partie entiere de x.



Etape 4 : Extension du résultat sur P(X > n) a P(X > z) grice aux parties entiéres

Fixons x € R7..
Par définition de la partie entiere,

lz] <z <|z]+1 (8)
On en déduit, comme on avait fait pour P(X > n) que
(X > [z]+1} c{X >z} c{X > [2]}
puis
PHX = [z] +1}) <PH{X > 2}) <PH{X = [2]})
(On a juste utilisé la décroissance de z — P(X > z)).

Comme z > 0, on a

tP{X > z}) < aP{X > [2]})

Nous gardons uniquement l'inégalité de droite car elle va nous permettre de conclure a elle
seule.
En effet, si on montre que zP({X > |z|}) — 0, alors, comme zP({X > x}) > 0, on aura

xr—>+00
par encadrement zP({X > z}) :>+O .
Reste a démontrer que zP({X > |z|}) — 0.

T—-+00

Etape 5 : Démonstration de zP({X > |z|}) — 0

T—-+00

En multipliant ’équation (8) par P({X > |[z]}) qui est positif, on obtient

0 <aP({X > [z]}) < (lz] + DP{X > |z]})

— 0<aP{X > [2]}) < [z]P({X > |z]}) + PH{X = |z]}) (9)
D’apres (9), pour montrer zP({X > |z]}) e 0, il est suffisant de montrer
2fP{X > [o]}) = 0 et PUX > [2]}) > 0.
Pour cela, on va utiliser nos deux résultats dus respectivement a la convergence de la série

E(X) et au théoreme d’Olivier :

P(X>n) — 0 et nP(X>n) — 0

n—-+4o0o n—-+4o0o

Fixons € € RY.
Par définition de la convergence, on dispose d'un rang N, € N tel que :

VneN n>N.—=P(X >n) < et nP(X >n)<

DN ™
DN ™



En particulier, par croissance de |.],

VzeR:, > N. = |z] > |N.] =N, = P(X > |z]) < % ot |z]P(X > |z]) < %
On a donc
Vo eR® 2> N, = 0<P(X > |z)) + [z|P(X > m)gg+325
Par définition de la limite d’une fonction en +o00, nous pouvons conclure que
P(X > |z]) + |=]P(X > |x]) e 0
Le théoréme d’encadrement appliqué a (9), donne
PIX 2 [a]}) 0
D’apres ce qui a été dit en amont de cette section, on obtient
P{X > z}) ol 0
0

Nous avons obtenu le résultat voulu lorsque X (£2) C N.
On procede comme précédemment pour arriver a la conclusion zP(X > z) — 0 dans le

r——+00
cas X () C R,.

Bonus : Comment faire sans indication 7

J’ai résolu l'exercice pour la premiere fois sans utiliser I'indication. Cette résolution est hors
du cadre de la classe préparatoire scientifique. Comme X est positive et intégrable, on dispose
de la formule

E(X) = /;Oo P(X > t)dt

qui se démontre en quelques lignes avec les propriétés sur 'intégrale de Lebesgue.
La fonction t — P(X > t) étant intégrable, positive et décroissante, on en déduit, grace a la
version « continue » du théoreme d’Olivier que

P(X2a2) — of2)

r—r+00 €x

La version continue du théoreme d’Olivier est un exercice classique de classe préparatoire
scientifique des que les intégrales généralisées ont été vues. O]



Résumé des preuves

Preuve 1
1) Commencer par supposer X (€2) C N.
2) Ecrire
PX>2) = 3 P(X

k=[z]
3) En déduire I'inégalité

+oo

tP(X >2) < Y kP(X =k)
k=[z]

4) Comme E(X) = > kP(X = k) < +o0, conclure par encadrement

2P(X > z) = 0
5) Pour traiter le cas général X () C R, il faut passer par | X | et 'encadrement | X| < X <
| X | + 1 qui permet d’obtenir I’encadrement

VeeR, 0<zP(X >z)<azP(|X|+1>x)

6) Montrer que | X | + 1 vérifie les bonnes hypotheses, lui appliquer le résultat et conclure par

le théoreme d’encadrement que
P(X>z) — 0

T—r+00

Preuve 2
1) Commencer par supposer X (€2) C N.
2) Ecrire
+oo
E(X) = Y. B(X > k)
k=1

et utiliser la convergence de la série et le théoreme d’Olivier pour conclure

P(X>n) — 0 e nP(X>n) — 0.

n—-+o00 n—-+o0o

3) Gréce a l'inégalité
0 <2P{X = z}) <aP{X = [2]})

se ramener a démontrer zP({X > |z|}) — 0.

4) Grace a l'inégalité
0 <2P{X > |z]}) < [¢|P{X > [2]}) + P({X = [2]})
se ramener a démontrer [z |P({X > LxJ}) o 0 et PHX > |z]|}) 0.

:E—)—I—oo



5) Utiliser la croissance de la partie entiere pour déduire de I’étape 2 :

[e|P{X > [z]}) = 0 et PUX>|z]}) = 0

T—+400 T—+00

6) Conclure grace a la chaine d’implications que si X () C N alors

P{X >zx}) — 0

T—>+00

7) Passer au cas X () C R, grace aux inégalités

0<zP(X >z) <zP(|X]|+1>x)

8) Appliquer le résultat dans le cas discret a [ X | + 1 pour montrer

PX|+1>2) — 0

- T——+00

9) En déduire, par encadrement,

P(X>2) — 0

T—+00



