
Énoncé

Soit X une variable aléatoire réelle positive d’espérance finie.
Montrer que :

P(X ≥ x) =
x→+∞

o( 1
x

)

Indication : Commencer par le cas où X(Ω) ⊂ N.

Correction

Analyse de l’énoncé

L’énoncé n’introduit pas d’espace probabilisé donc on suppose travailler sur (Ω, F ,P) l’espace
probabilisé sur lequel X est définie.
Commençons par traduire l’énoncé et ses hypothèses.

La positivité :
∀ω ∈ Ω X(ω) ≥ 0

L’intégrabilité :
E(|X|) = E(X) < +∞

Remarque :
Quand la variable aléatoire est positive, E(X) est toujours bien définie dans R+ ∪ {+∞}.

Ce qu’il faut montrer :
Il faut montrer que P(X ≥ x) =

x→+∞
o( 1

x
), c’est-à-dire :

P(X ≥ x)
1
x

−→
x→+∞

0 ⇐⇒ xP(X ≥ x) −→
x→+∞

0

Idée :
Comparer P(X ≥ x) et 1

x
, quand X est positive et x ∈ R∗

+ fait immédiatement penser à
l’inégalité de Markov. À ce stade de la résolution, il n’est pas évident qu’il est nécessaire
de commencer par le cas X(Ω) ⊂ N pour avancer dans la résolution.

Tentative de résolution directe avec l’inégalité de Markov

Soit x ∈ R∗
+.

X est positive et d’espérance finie donc d’après l’inégalité de Markov,

P(X ≥ x) ≤ E(X)
x



Cette inégalité, valable pour tout x > 0, signifie exactement que

P(X ≥ x) =
x→+∞

O( 1
x

) car E(X) est un réel

L’inégalité obtenue est proche du résultat demandé mais manque de précision. Nous avons un
O( 1

x
) alors qu’il est demandé un o( 1

x
) quand x → +∞.

On rencontre ici la première difficulté de l’exercice.
Ce qu’on pourrait se dire c’est que plutôt que de comparer P(X ≥ x) à 1

x
, on peut peut-être

comparer P(X ≥ x) à une puissance de 1
x

comme 1
x2 . Ainsi on espère obtenir le o( 1

x
).

Voilà comment on pourrait procéder.

Seconde tentative avec l’inégalité de Markov sur X2

Comme X est positive, les événements {X ≥ x} et {X2 ≥ x2} sont égaux (car x 7→ x2 est
une bijection de R+ dans lui-même). Par conséquent, nous avons, toujours d’après l’inégalité
de Markov (appliquée à X2),

P({X ≥ x}) = P({X2 ≥ x2}) ≤ E(X2)
x2

Ce qui donne
xP({X ≥ x}) ≤ E(X2)

x
Cette inégalité est toujours vraie dans R+ ∪ {+∞}. En effet, si le membre de droite est fini,
c’est l’inégalité de Markov classique et sinon c’est juste une inégalité entre +∞ et un réel. Si
on avait E(X2) finie, alors on pourrait conclure que

xP({X ≥ x}) −→
x→+∞

0

Malheureusement, admettre un moment d’ordre 1 n’implique pas d’avoir un moment d’ordre
2, donc cette piste ne permet pas de conclure.

Suivons l’indication donnée par l’énoncé en supposant X(Ω) ⊂ N.

Étape 1 : Commencer par le cas X(Ω) ⊂ N

Quel est le but de cette indication ?
On peut penser à deux choses.

1ère intuition
Tout d’abord, cette indication peut nous mettre sur la piste d’une formule du cours reliant les
quantités E(X) et P(X ≥ n)

(
qui est proche de P(X ≥ x)

)
, lorsque X(Ω) ⊂ N ∪ {+∞}.

Voici l’égalité, très utile :

E(X) =
+∞∑
k=1

P(X ≥ k)



2nd intuition
Sinon, le fait que X soit discrète et en plus à valeurs dans N permet d’exprimer simplement
P(X ≥ x) :

P(X ≥ x) = P(
⋃

k≥x,k∈N
{X = k}) (1)

En considérant la partie entière par excès de x notée ⌈x⌉ qui est le plus petit entier
supérieur ou égal à x, on peut écrire

P(X ≥ x) = P(
⋃

k≥⌈x⌉
{X = k})

Car la seule façon pour un entier k d’être supérieur à x est d’être supérieur à l’entier ⌈x⌉.
Attention

La partie entière par excès n’est pas la partie entière augmentée de 1 ! On peut s’en convaincre
en regardant ⌊2⌋ = 2 et ⌈2⌉ = 2 ̸= ⌊2⌋ + 1.
Enfin, comme les événements qui composent l’union sont disjoints, par σ-additivité,

P(X ≥ x) =
+∞∑

k=⌈x⌉
P(X = k) (2)

On pourra retenir cette écriture.
Notez bien que si X n’est pas discrète, on ne peut même pas écrire (1). Les variables aléatoires
réelles discrètes sont un cadre très particulier de la théorie des probabilités qui permet de
donner des expressions simplifiées à beaucoup d’objets comme l’espérance par exemple.

Nous allons proposer deux solutions. L’une prenant comme point de départ notre 1ère intuition
et l’autre issue de la 2nd intuition. Nous commençons par la 2nd intuition car la démonstration
est moins technique.

Étape 2 : Démonstration de xP(X ≥ x) →
x→+∞

0 grâce à l’écriture

P(X ≥ x) =
+∞∑

k=⌈x⌉
P(X = k)

Fixons x ∈ R+.
D’après l’égalité (2), nous pouvons écrire :

xP(X ≥ x) = x
+∞∑

k=⌈x⌉
P(X = k)

=
+∞∑

k=⌈x⌉
xP(X = k)



Cette somme n’est pas loin de l’expression de E(X) quand X(Ω) ⊂ N :

E(X) =
déf.

∑
k∈X(Ω)

kP(X = k)

=
∑
k∈N

kP(X = k) (X(Ω) ⊂ N et si k /∈ X(Ω) P(X = k) = 0 d’où l’égalité des sommes)

E(X) =
+∞∑
k=0

k P(X = k)

On pourra retenir la dernière égalité, qui ne dépend pas de l’intégrabilité de X. Ici, comme X
est intégrable, la série

∑
k∈N

k P(X = k) est convergente.

Ce qu’il faut ensuite voir c’est que les deux quantités

+∞∑
k=⌈x⌉

xP(X = k) et
+∞∑
k=0

k P(X = k)

peuvent être reliées par une majoration triviale.
La première somme étant indexée sur les entiers k ≥ ⌈x⌉ (avec ⌈x⌉ ≥ x), on a évidemment
l’inégalité
xP(X = k) ≤ kP(X = k). On injecte cette inégalité dans la somme,

xP(X ≥ x) =
+∞∑

k=⌈x⌉
xP(X = k) ≤

+∞∑
k=⌈x⌉

kP(X = k)

On a donc les inégalités

0 ≤
positivité de P

xP(X ≥ x) ≤
+∞∑

k=⌈x⌉
kP(X = k) (3)

Si on montre que le membre de droite de (3) tend vers 0, on aura grâce au théorème
d’encadrement xP(X ≥ x) →

x→+∞
0.

Le membre de droite de (3) est le reste d’ordre ⌈x⌉ de la série
∑
n∈N

nP(X = n) qui est par

hypothèse convergente. Donc

+∞∑
k=n

kP(X = k) →
n→+∞

n∈N

0 (4)

Peut-on conclure directement à partir de (4) que
+∞∑

k=⌈x⌉
kP(X = k) →

x→+∞
x∈R

0 ?

La réponse est oui.



Il serait tentant ici de se dire que comme
+∞∑
k=n

kP(X = k) →
n→+∞

0 alors par extraction
+∞∑

k=⌈x⌉
kP(X = k) →

x→+∞
0. Seulement, cet argument est faux.

( +∞∑
k=⌈x⌉

kP(X = k)
)

x∈R+

n’est pas une suite extraite de
( +∞∑

k=n

kP(X = k)
)

n∈N
. C’est une

fonction qui a pour ensemble de départ R+.
Nous allons étendre la limite d’une suite réelle en +∞ à une fonction au voisinage de +∞.
Voici comment procéder en 2 étapes.
L’inégalité ⌈x⌉ ≥ x permet de conclure, d’après le théorème de divergence par minoration
que ⌈x⌉ →

x→+∞
+∞.

Ensuite, nous allons revenir à la définition de la limite d’une fonction pour montrer que la

fonction x 7→
+∞∑

k=⌈x⌉
kP(X = k) admet le réel 0 pour limite en +∞.

Fixons ε ∈ R∗
+.

1) Par définition de la convergence, on dispose d’un rang Nε ∈ N tel que :

∀n ∈ N n ≥ Nε =⇒
+∞∑
k=n

kP(X = k) ≤ ε (5)

Comme ⌈x⌉ →
x→+∞

+∞, on dispose d’un réel A, que l’on peut supposer supérieur à Nε tel que

∀x ∈ R x ≥ A =⇒ ⌈x⌉ ≥ Nε (6)

2) Ainsi, comme ⌈x⌉ est toujours un entier, en cumulant les implications (5) et (6), on obtient
l’assertion

∀x ∈ R x ≥ A =⇒
+∞∑

k=⌈x⌉
kP(X = k) ≤ ε

Par définition de la limite d’une fonction en +∞, nous pouvons conclure que

+∞∑
k=⌈x⌉

kP(X = k) →
x→+∞

0

Ce qui entraîne, d’après le théorème d’encadrement et l’inégalité (3),

xP(X ≥ x) →
x→+∞

0

Nous avons obtenu le résultat voulu lorsque X(Ω) ⊂ N.



Idée :
Pour passer au cas X(Ω) ⊂ R+, nous allons utiliser la partie entière de la variable aléatoire
X. C’est une bonne idée car ⌊X⌋ est une variable aléatoire intégrable telle que ⌊X⌋(Ω) ⊂ N
donc on va pouvoir lui appliquer le résultat démontré. De plus, cette variable aléatoire encadre
X donc on peut espérer, peut-être par un théorème d’encadrement, prolonger le résultat
obtenu à X.

Étape 3 : Extension du résultat sur P(X ≥ x) avec X(Ω) ⊂ N à P(X ≥ x) avec
X(Ω) ⊂ R+

Fixons x ∈ R+.
On a par définition de la partie entière de X (notée ⌊X⌋),

⌊X⌋ ≤ X ≤ ⌊X⌋ + 1

Donc par décroissance de x 7→ P(X ≥ x) (preuve page 8-9),

P(⌊X⌋ ≥ x) ≤ P(X ≥ x) ≤ P(⌊X⌋ + 1 ≥ x)

=⇒
x≥0

0 ≤ xP(⌊X⌋ ≥ x) ≤ xP(X ≥ x) ≤ xP(⌊X⌋ + 1 ≥ x) (7)

Examinons le membre de droite de l’inégalité.
⌊X⌋ + 1 est une variable aléatoire positive et à valeurs dans N. Elle est intégrable en tant que
somme de variables aléatoires intégrables. En effet,

⌊X⌋ est intégrable d’après les inégalités

0 ≤ ⌊X⌋ ≤ X

1 est également intégrable avec E(1) = 1.
On peut donc appliquer le résultat précédemment démontré :

xP(⌊X⌋ + 1 ≥ x) →
x→+∞

0

D’après (7), le théorème d’encadrement donne :

xP(X ≥ x) →
x→+∞

0 et P(X ≥ x) =
x→+∞

o( 1
x

)

A présent, redémontrons xP(X ≥ x) →
x→+∞

0, dans le cas où X(Ω) ⊂ N, en prenant pour

point de départ l’égalité E(X) =
+∞∑
k=1

P(X ≥ k). Cette démonstration utilise plus d’outils mais

constitue un point de départ naturel qui permet également de s’en sortir. Avant de commencer,
faisons quelques remarques sur cette formule.



Remarque :
En effectuant le changement d’indice i = k − 1 dans la somme, on obtient

E(X) =
+∞∑
k=1

P(X ≥ k) =
+∞∑
i=0

P(X ≥ i + 1)

Or comme X est à valeurs entières,
∀i ∈ N {X ≥ i + 1} = {X > i} =⇒ ∀i ∈ N P({X ≥ i + 1}) = P({X > i})

Donc l’espérance se réécrit :

E(X) =
+∞∑
i=0

P(X > i)

Cette dernière égalité a fait l’objet de la question 1 (sur 18 questions) du sujet de Mathéma-
tiques 1 MP 2024 du concours CCINP. La démonstration est proposée en trois étapes dans le
sujet et nécessite de montrer que

nP(X > n) →
n→+∞

0

Le rapport du jury affirme que « La limite nP(X > n) a posé soucis alors qu’il s’agit d’une
question de cours. ». Les candidats à ce concours se sont retrouvés en difficulté face à cette
question, qui est un cas particulier de l’exercice que nous avons traité ici.
La preuve généralement donnée en classe de MP est différente de celle proposée par le sujet
CCINP.
C’est une application du théorème de Fubini sur les sommes doubles de réels positifs.
Revoyons cette preuve :

E(X) =
+∞∑
n=0

nP(X = n)

=
+∞∑
n=0

n−1∑
k=0

P(X = n) car n =
n−1∑
k=0

1

=
+∞∑
n=0

+∞∑
k=0

P(X = n)1{k<n}

=
+∞∑
k=0

+∞∑
n=0

P(X = n)1{k<n}
(
Fubini sur la famille positive(P(X = n)1{k<n})(k,n)∈N×N

)

=
+∞∑
k=0

+∞∑
n=k+1

P(X = n)

E(X) =
+∞∑
k=0

P(X > k) car
+∞∑

n=k+1
P(X = n) = P(X > k)

Cette démonstration ne donne pas tellement d’idée sur comment démontrer le résultat
nP(X > n) →

n→+∞
0.

Fin de la remarque.



Étape 2 : Démonstration de xP(X ≥ x) →
x→+∞

0 grâce à l’écriture

E(X) =
+∞∑
k=1

P(X ≥ k)

Nous avons deux propriétés sur la suite (P(X ≥ n))n∈N.

1) positive (évident par positivité d’une probabilité).
2) décroissante on peut le montrer en disant que

∀n ∈ N ∀ω ∈ Ω X(ω) ≥ n + 1 =⇒ X(ω) ≥ n

⇒ ∀n ∈ N {X ≥ n + 1} ⊂ {X ≥ n}

et par croissance de la probabilité,

⇒ ∀n ∈ N P({X ≥ n + 1}) ≤ P({X ≥ n})

On peut aussi voir directement que (P(X ≥ n))n∈N est décroissante grâce à une intuition
probabiliste. On peut se dire qu’être plus grand que n + 1 est plus exigeant qu’être plus grand
que n donc cet événement a moins de chances d’arriver et P(X ≥ n + 1) ≤ P(X ≥ n) .

Étape 3 : Utilisation du théorème d’Olivier

Ces 2 propriétés cumulées au fait que la série
∑
n∈N

P(X ≥ n) converge par hypothèse permettent

d’affirmer que

nP(X ≥ n) →
n→+∞

0

Ce résultat hors programme est connu sous le nom de théorème d’Olivier.
Voici son énoncé général :

Pour toute suite réelle (an)n∈N positive et décroissante telle que
∑
n∈N

an converge, on a

nan →
n→+∞

0

Sa démonstration n’est pas facile mais tient en quelques lignes. Pour une démonstration, voir
par exemple Francinou, Gianella et Nicolas (2020), Oraux X–ENS mathématiques, vol. 3,
exercice 3.15 p.205.
On a donc obtenu que nP(X ≥ n) →

n→+∞
0.

Analyse de la situation
Le problème est que la limite porte sur un paramètre entier n et nous voudrions l’étendre à
un paramètre continu x. Une idée dans ce genre de situations peut être de faire intervenir la
partie entière de x.



Étape 4 : Extension du résultat sur P(X ≥ n) à P(X ≥ x) grâce aux parties entières

Fixons x ∈ R∗
+.

Par définition de la partie entière,

⌊x⌋ ≤ x < ⌊x⌋ + 1 (8)

On en déduit, comme on avait fait pour P(X ≥ n) que

{X ≥ ⌊x⌋ + 1} ⊂ {X ≥ x} ⊂ {X ≥ ⌊x⌋}

puis
P({X ≥ ⌊x⌋ + 1}) ≤ P({X ≥ x}) ≤ P({X ≥ ⌊x⌋})

(On a juste utilisé la décroissance de x 7→ P(X ≥ x)).
Comme x ≥ 0, on a

xP({X ≥ x}) ≤ xP({X ≥ ⌊x⌋})

Nous gardons uniquement l’inégalité de droite car elle va nous permettre de conclure à elle
seule.
En effet, si on montre que xP({X ≥ ⌊x⌋}) →

x→+∞
0, alors, comme xP({X ≥ x}) ≥ 0, on aura

par encadrement xP({X ≥ x}) → 0
x→+∞

.

Reste à démontrer que xP({X ≥ ⌊x⌋}) →
x→+∞

0.

Étape 5 : Démonstration de xP({X ≥ ⌊x⌋}) →
x→+∞

0

En multipliant l’équation (8) par P({X ≥ ⌊x⌋}) qui est positif, on obtient

0 ≤ xP({X ≥ ⌊x⌋}) ≤ (⌊x⌋ + 1)P({X ≥ ⌊x⌋})

⇐⇒ 0 ≤ xP({X ≥ ⌊x⌋}) ≤ ⌊x⌋P({X ≥ ⌊x⌋}) + P({X ≥ ⌊x⌋}) (9)

D’après (9), pour montrer xP({X ≥ ⌊x⌋}) →
x→+∞

0, il est suffisant de montrer
⌊x⌋P({X ≥ ⌊x⌋}) →

x→+∞
0 et P({X ≥ ⌊x⌋}) →

x→+∞
0.

Pour cela, on va utiliser nos deux résultats dus respectivement à la convergence de la série
E(X) et au théorème d’Olivier :

P(X ≥ n) →
n→+∞

0 et nP(X ≥ n) →
n→+∞

0

Fixons ε ∈ R∗
+.

Par définition de la convergence, on dispose d’un rang Nε ∈ N tel que :

∀n ∈ N n ≥ Nε =⇒ P(X ≥ n) ≤ ε

2 et nP(X ≥ n) ≤ ε

2



En particulier, par croissance de ⌊.⌋,

∀x ∈ R∗
+ x ≥ Nε =⇒ ⌊x⌋ ≥ ⌊Nε⌋ = Nε =⇒ P(X ≥ ⌊x⌋) ≤ ε

2 et ⌊x⌋P(X ≥ ⌊x⌋) ≤ ε

2

On a donc

∀x ∈ R∗
+ x ≥ Nε =⇒ 0 ≤ P(X ≥ ⌊x⌋) + ⌊x⌋P(X ≥ ⌊x⌋) ≤ ε

2 + ε

2 = ε

Par définition de la limite d’une fonction en +∞, nous pouvons conclure que

P(X ≥ ⌊x⌋) + ⌊x⌋P(X ≥ ⌊x⌋) →
x→+∞

0

Le théorème d’encadrement appliqué à (9), donne

xP({X ≥ ⌊x⌋}) →
x→+∞

0

D’après ce qui a été dit en amont de cette section, on obtient

xP({X ≥ x}) →
x→+∞

0

Nous avons obtenu le résultat voulu lorsque X(Ω) ⊂ N.
On procède comme précédemment pour arriver à la conclusion xP(X ≥ x) →

x→+∞
0 dans le

cas X(Ω) ⊂ R+.

Bonus : Comment faire sans indication ?

J’ai résolu l’exercice pour la première fois sans utiliser l’indication. Cette résolution est hors
du cadre de la classe préparatoire scientifique. Comme X est positive et intégrable, on dispose
de la formule

E(X) =
∫ +∞

0
P(X ≥ t) dt

qui se démontre en quelques lignes avec les propriétés sur l’intégrale de Lebesgue.
La fonction t 7→ P(X ≥ t) étant intégrable, positive et décroissante, on en déduit, grâce à la
version « continue » du théorème d’Olivier que

P(X ≥ x) =
x→+∞

o( 1
x

)

La version continue du théorème d’Olivier est un exercice classique de classe préparatoire
scientifique dès que les intégrales généralisées ont été vues.



Résumé des preuves

Preuve 1
1) Commencer par supposer X(Ω) ⊂ N.
2) Ecrire

P(X ≥ x) =
+∞∑

k=⌈x⌉
P(X = k)

3) En déduire l’inégalité

xP(X ≥ x) ≤
+∞∑

k=⌈x⌉
kP(X = k)

4) Comme E(X) =
+∞∑
k=0

k P(X = k) < +∞, conclure par encadrement

xP(X ≥ x) →
x→+∞

0

5) Pour traiter le cas général X(Ω) ⊂ R, il faut passer par ⌊X⌋ et l’encadrement ⌊X⌋ ≤ X ≤
⌊X⌋ + 1 qui permet d’obtenir l’encadrement

∀x ∈ R+ 0 ≤ xP(X ≥ x) ≤ xP(⌊X⌋ + 1 ≥ x)

6) Montrer que ⌊X⌋ + 1 vérifie les bonnes hypothèses, lui appliquer le résultat et conclure par
le théorème d’encadrement que

xP(X ≥ x) →
x→+∞

0

Preuve 2
1) Commencer par supposer X(Ω) ⊂ N.
2) Ecrire

E(X) =
+∞∑
k=1

P(X ≥ k)

et utiliser la convergence de la série et le théorème d’Olivier pour conclure

P(X ≥ n) →
n→+∞

0 et nP(X ≥ n) →
n→+∞

0.

3) Grâce à l’inégalité
0 ≤ xP({X ≥ x}) ≤ xP({X ≥ ⌊x⌋})

se ramener à démontrer xP({X ≥ ⌊x⌋}) →
x→+∞

0.

4) Grâce à l’inégalité

0 ≤ xP({X ≥ ⌊x⌋}) ≤ ⌊x⌋P({X ≥ ⌊x⌋}) + P({X ≥ ⌊x⌋})

se ramener à démontrer ⌊x⌋P({X ≥ ⌊x⌋}) →
x→+∞

0 et P({X ≥ ⌊x⌋}) →
x→+∞

0.



5) Utiliser la croissance de la partie entière pour déduire de l’étape 2 :

⌊x⌋P({X ≥ ⌊x⌋}) →
x→+∞

0 et P({X ≥ ⌊x⌋}) →
x→+∞

0

6) Conclure grâce à la chaîne d’implications que si X(Ω) ⊂ N alors

xP({X ≥ x}) →
x→+∞

0

7) Passer au cas X(Ω) ⊂ R+ grâce aux inégalités

0 ≤ xP(X ≥ x) ≤ xP(⌊X⌋ + 1 ≥ x)

8) Appliquer le résultat dans le cas discret à ⌊X⌋ + 1 pour montrer

xP(⌊X⌋ + 1 ≥ x) →
x→+∞

0

9) En déduire, par encadrement,

xP(X ≥ x) →
x→+∞

0


