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1 Introduction
Ce projet traite du retour à l’état d’équilibre stable en temps fini d’un pendule simple

via une force de contrôle t 7→ h(t), que l’on souhaite optimiser afin de minimiser l’énergie
consommée. Après avoir modélisé le système dynamique par une équation différentielle non
linéaire, nous en dérivons une version discrétisée à l’aide du schéma d’Euler explicite. Cette
phase initiale permet d’analyser le comportement du pendule sous différentes fonctions
de contrôle choisies empiriquement (constante, sinusoïdale, impulsion, rétroaction). Nous
nous plaçons par la suite dans le cadre des petites oscillations, ce qui permet de linéariser
la dynamique du système.

Une fois le problème d’optimisation discrétisé, il prend la forme d’une minimisation
quadratique sous contraintes dynamiques linéaires. Nous en proposons une résolution
numérique via la méthode du gradient projeté à pas fixe, en détaillant sa mise en œuvre,
sa convergence, et la construction de la projection sur l’ensemble admissible.

Enfin, nous établissons une formulation variationnelle rigoureuse du problème d’opti-
misation dans un espace de Sobolev adapté, et montrons, via le théorème de Lax–Milgram,
l’existence et l’unicité de la solution optimale. L’analyse conduit à une équation d’Eu-
ler–Lagrange d’ordre 4 que nous résolvons explicitement. Nous concluons en reliant cette
solution à une approche hamiltonienne via le principe de Pontryagin, assurant la cohérence
entre méthode variationnelle et contrôle optimal.
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2 Modélisation du pendule simple

2.1 Équation différentielle

L’étude est conduite sur l’intervalle temporel [0,1].
Le pendule simple sans frottement soumis à une force de contrôle externe t 7→ h(t) est
modélisé par l’équation :

∀t ∈ [0, 1] θ̈(t) + ω2 sin(θ(t)) = h(t).

avec :
— θ(t) l’angle du pendule avec la verticale à l’instant t,
— ω :=

√
g
l

— g l’accélération gravitationnelle,
— l la longueur du fil,
— h(t) la force de contrôle externe, au moins continue.

2.2 Réécriture sous forme d’un système

Transformons l’équation en un système d’ordre 1. Pour cela on utilise d’abord la
relation dθ

dt
= θ̇ qui n’est rien de plus que la définition de dθ

dt
. On utilise ensuite la relation

θ̈ = −ω2 sin(θ) + h issue de l’équation différentielle, que l’on réécrit, par définition de θ̈,
dθ̇
dt

= −ω2 sin(θ) + h. On obtient le système suivant :{
dθ
dt
(t) = θ̇(t)

dθ̇
dt
(t) = −ω2 sin(θ(t)) + h(t)

Cette réécriture sous la forme d’un système d’ordre 1 i.e ne faisant intervenir que des
dérivées d’ordre 1 par rapport au temps, permet la résolution numérique de ce problème
grâce la méthode d’Euler explicite.
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3 Résolution numérique : Euler explicite

3.1 Principe de la méthode

Si l’on considère une équation différentielle ordinaire d’ordre 1 avec une condition initiale :{
y′(t) = f(t, y(t)) si t ∈ [0, 1]

y(0) = y0

Connaissant la valeur de y à un instant tn ∈ [0, 1[, on peut, sous réserve que y soit
suffisamment régulière (par exemple de classe C1), exprimer la valeur de y à l’instant
suivant tn+1 ∈]tn, 1] à l’aide de la formule :∫ tn+1

tn

y′(t) dt = y(tn+1)− y(tn).

donc :

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t, y(t)) dt

Tout l’enjeu réside dans l’approximation de l’intégrale
∫ tn+1

tn
f(t, y(t)) dt.

La méthode d’Euler explicite consiste à approximer cette intégrale par l’aire algébrique
du rectangle de hauteur f(tn, y(tn)) et de largeur tn+1 − tn. Soit :∫ tn+1

tn

f(t, y(t)) dt ≈ f(tn, y(tn))(tn+1 − tn)

D’où le schéma itératif :{
yn+1 = yn + (tn+1 − tn)f(tn, yn)

y0 = y(0)

Dans notre cas,

y :=

(
θ

θ̇

)
et pour tout t ∈ [0, 1], f(t, y(t)) :=

(
θ̇(t)

−g
l
sin(θ(t)) + h(t)

)
.

3.2 Application au pendule

On obtient ce schéma itératif, permettant de calculer les valeurs de θ(t) et θ̇(t) de
proche en proche : {

θn+1 = θn + (tn+1 − tn) · θ̇n

θ̇n+1 = θ̇n + (tn+1 − tn) ·
(
−g
l
sin(θn) + h(tn)

)
Pour simplifier les calculs, on introduit une subdivision régulière de l’intervalle [0, 1],
définie par la suite (tn)0≤n≤N , où N ∈ N∗ est le nombre de sous-intervalles. Ainsi, pour
tout n ∈ {0, . . . , N − 1} la différence tn+1 − tn est constante.
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On pose alors :

∆t := tn+1 − tn =
1

N
.

De plus,

∀n ∈ {0, . . . , N} tn =
n

N
Le schéma devient : {

θn+1 = θn +∆t · θ̇n,
θ̇n+1 = θ̇n +∆t ·

(
−g
l
sin(θn) + h(tn)

)
.

3.3 Étude de différentes fonctions de contrôle

Paramètres de la simulation
Nous choisissons les conditions initiales suivantes pour le pendule :

θ(0) = 0.8 rad, θ̇(0) = 0 rad.s−1.

L’intervalle temporel de la simulation est fixé à [0, T ] avec T = 10 secondes. Ce choix
est motivé par le fait qu’un intervalle trop court, comme [0, 1], ne permet pas d’observer
efficacement le comportement du pendule soumis à différentes fonctions de contrôle h.
Nous effectuons une subdivision régulière de cet intervalle à l’aide de N = 20000 points,
ce qui permet d’assurer une bonne précision numérique.

Les paramètres physiques du système sont les suivants :
— Accélération gravitationnelle : g = 9,81 m · s−2

— Longueur du pendule : l = 1,0m

Nous testons différentes fonctions de contrôle t 7→ h(t) afin d’observer leur effet sur le
comportement du pendule. Chaque graphique présente l’évolution de θ(t) pour un choix
donné de t 7→ h(t).

Cas 1 : h(t) = 0 (aucun contrôle)
Le pendule oscille librement sans intervention externe.

Évolution naturelle sans contrôle externe h(t) = 0
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Cas 2 : h(t) = −3θ(t)− 2θ̇(t) (rétroaction stabilisante)
Ce contrôle agit comme un correcteur proportionnel-dérivé : il cherche à ramener θ
vers zéro.

Contrôle par rétroaction h(t) = −3θ(t)− 2θ̇(t)

Les autres fonctions de contrôle testées, ainsi que l’ensemble des simulations, sont présen-
tées en Annexe A.

Conclusion
Les simulations précédentes montrent que certaines formes de contrôle, notamment par
rétroaction, permettent de stabiliser efficacement le pendule. Toutefois, ces approches
reposent sur des choix empiriques de la fonction t 7→ h(t), sans garantie que l’énergie
dépensée soit minimale.
Cela motive une démarche plus rigoureuse, dans laquelle nous cherchons à déterminer,
parmi toutes les fonctions admissibles, celle qui ramène le pendule à l’équilibre tout en
minimisant l’énergie fournie.
Nous passons donc à une formulation mathématique du problème d’optimisation, en dé-
finissant précisément le critère de coût et les contraintes dynamiques associées.
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4 Formulation du problème d’optimisation

4.1 Objectif

Nous cherchons maintenant à déterminer une fonction de contrôle t 7→ h(t) définie
sur [0, 1], permettant de ramener le pendule à l’état d’équilibre (θ, θ̇) = (0, 0) tout en
minimisant l’énergie nécessaire pour y parvenir.

L’énergie consommée est modélisée par une fonctionnelle de coût J :

∀J ∈ C0([0, 1],R) J(h) :=

∫ 1

0

h(t)2 dt.

Ce critère quadratique est standard en contrôle optimal car il pénalise les efforts ex-
cessifs et conduit à un problème convexe bien posé.
Plutôt que de traiter immédiatement le problème dans son cadre fonctionnel continu,
nous en étudions d’abord une version discrétisée, adaptée à une résolution numérique.
Cette première formulation prépare le passage à une approche plus abstraite, qui sera
développée en fin de rapport à travers une formulation variationnelle rigoureuse dans un
espace de Sobolev adapté.

4.2 Discrétisation du problème

En reprenant le schéma d’Euler explicite, nous avons déjà obtenu une discrétisation
de l’équation différentielle du pendule sous la forme :{

θn+1 = θn + ∆t · θ̇n,
θ̇n+1 = θ̇n + ∆t ·

(
−g
l
sin(θn) + hn

)
,

où hn := h(tn).

Soit N ∈ N∗. On discrétise la fonctionnelle de coût par la N-ième somme de Riemann
associée à la subdivision 0 = t0 < t1 < · · · < tN = 1. La fonctionnelle de coût devient
alors :

J(h) ≈
N−1∑
n=0

∆t · h2n

Cette approximation est justifiée par le fait que, pour h continue,
N−1∑
i=0

∆t · h(ti)2 −−−−→
N→+∞

∫ 1

0

h(t)2 dt

Nous cherchons donc à résoudre le problème d’optimisation discret suivant :

min
(h0,...,hN−1)∈RN

N−1∑
n=0

∆t · h2n

sous les contraintes :

∀n ∈ {0, . . . , N − 1}, θn+1 = θn +∆t · θ̇n,

∀n ∈ {0, . . . , N − 1}, θ̇n+1 = θ̇n +∆t ·
(
−g
l
sin(θn) + hn

)
,

θ0, θ̇0 ∈ R θN = 0, θ̇N = 0

(1)
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Complexité du problème non linéaire
Ce problème d’optimisation est difficile à résoudre en raison de la non-linéarité in-

troduite par le terme sin(θn) dans les contraintes dynamiques. Cette non-linéarité rend
l’ensemble des trajectoires admissible non convexe, ce qui complique à la fois l’analyse
théorique (existence et unicité de la solution) et la résolution numérique (présence possible
de minima locaux, convergence non garantie des algorithmes classiques).

Afin de contourner ces difficultés, nous nous plaçons par la suite dans le régime des pe-
tites oscillations, c’est-à-dire lorsque l’angle reste suffisamment proche de zéro (|θn| ≤ 0,2
rad). Dans ce cas, l’approximation sin(θn) ≈ θn est valable, et les contraintes dynamiques

deviennent affines en
(
θn
θ̇n

)
. Cette simplification permet de reformuler le problème comme

une minimisation quadratique sous contraintes affines, bien mieux adapté à une résolution
numérique rigoureuse et efficace.

4.3 Linéarisation du problème dans le cas des petites oscillations

Comme expliqué dans le dernier paragraphe, on se place dans le cas de petites oscil-
lations (|θn| ≤ 0,2 rad) et on utilise sin(θn) ≈ θn.
On considère RN muni de son produit scalaire canonique :

∀ (x, y) ∈ RN × RN ⟨x, y⟩ :=
N∑

n=1

xnyn = xTy

où xt désigne la transposée de x vu comme élément de Mn,1(R) et le produit utilisé est
le produit matriciel usuel. Le problème devient :

min
h=(h0,...,hN−1)∈RN

∆t∥h∥2

∀n ∈ {0, . . . , N − 1}, θn+1 = θn +∆t · θ̇n
∀n ∈ {0, . . . , N − 1}, θ̇n+1 = θ̇n +∆t ·

(
−g
l
θn + hn

)
θ0, θ̇0 ∈ R, θN = 0, θ̇N = 0

Notons :

A :=

(
1 ∆t

−g
l
∆t 1

)
∈ M2,2(R), B :=

(
0
∆t

)
∈ R2 et ∀n ∈ {0, . . . , N−1} Yn :=

(
θn
θ̇n

)
∈ R2.

Le problème se réécrit :

min
h=(h0,...,hN−1)∈RN

∆t∥h∥2

∀n ∈ {0, . . . , N − 1}, Yn+1 = AYn + hnB

Y0 ∈ R2

YN =

(
θN
θ̇N

)
=

(
0
0

)
Notons que A est inversible. En effet,

det(A) = 1 + ∆t2 · g
l
> 0
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Soit n ∈ {0, . . . , N − 1}.
En multipliant la relation Yn+1 = AYn + hnB à gauche par A−(n+1), on obtient :

A−(n+1)Yn+1 = A−nYn + hnA
−(n+1)B.

En sommant cette égalité pour n allant de 0 à N − 1, on obtient par télescopage :

A0Y0 +
N−1∑
n=0

hnA
−(n+1)B = A−NYN (∗)

Comme YN =

(
0
0

)
, on obtient :

N−1∑
n=0

hnA
−(n+1)B = −A0Y0

Il est plus commode de travailler avec les puissances de A qu’avec les puissances de A−1,
donc on multiplie par AN à gauche. Cela donne :

N−1∑
n=0

hnA
N−(n+1)B = −ANY0.

Posons :
M :=

(
AN−1B AN−2B · · · B

)
∈ R2×N

La contrainte devient :

Mh = −ANY0

Résoudre le problème initial implique la résolution de ce problème de minimisation :
min
h∈RN

∆t∥h∥2

Mh = −ANY0

Y0 ∈ R2

Ces problèmes sont en fait équivalents.
En effet, si un vecteur h ∈ RN vérifie Mh = −ANY0, alors on peut reconstruire la
trajectoire complète (Yn)0≤n≤N par récurrence en posant :{

Y0 ∈ R2

∀n ∈ {0, . . . , N − 1}, Yn+1 = AYn + hnB

En reprenant l’équation (∗), une telle trajectoire vérifie :

YN = ANY0 +
N−1∑
k=0

hkA
N−1−kB

⇐⇒ YN = ANY0 +Mh

⇐⇒ YN = ANY0 + (−ANY0)

⇐⇒ YN = 0

9



Optimisation du retour à l’équilibre Projet de mathématiques

Ainsi, la trajectoire (Yn)0≤n≤N définie par récurrence à partir de Y0 et du vecteur h respecte
bien toutes les contraintes du problème initial.

min
h=(h0,...,hN−1)∈RN

∆t · ∥h∥2

∀n ∈ {0, . . . , N − 1} Yn+1 = AYn + hnB

Y0 ∈ R2

YN =

(
0
0

) ⇔


min
h∈RN

∆t.∥h∥2

Mh = −ANY0

Y0 ∈ R2

Dans le problème de droite, les contraintes dynamiques et la condition finale ont été
condensées en une unique contrainte affine en h ∈ Rn de la forme Mh = −ANY0. On
passe ainsi d’un ensemble de N contraintes couplées et une condition finale à une seule
équation affine en h ∈ Rn, ce qui simplifie considérablement l’analyse du problème. On
étudie donc ce nouveau problème.

4.4 Caractéristiques du problème simplifié

4.4.1 Etude de la fonction objectif

Soit h ∈ RN .
Notons IN la matrice identité de MN(R).
On peut écrire :

∆t∥h∥2 = ∆t(hTh)

∆t∥h∥2 = hT∆tINh (car INh = h)

∆t∥h∥2 = 1

2
hT (2∆tIN)h

Posons :

Q := 2∆tIN = (Qi,j)1≤i,j≤n ∈ Mn(R)

Alors Q est clairement symétrique et définie positive, car elle est diagonale et ses coeffi-
cients diagonaux sont strictement positifs.
On a alors :

∆t∥h∥2 = 1

2
hTQh

La fonction objectif se réécrit :

J :

RN → R

h 7→ 1

2
hTQh

Par définition, J est une forme quadratique. Elle est polynomiale en h ∈ RN donc admet
des dérivées partielles à tout ordre.
En tout point x ∈ RN , on peut calculer son gradient ∇(x) ∈ RN et sa hessienne
∇2(x) ∈ MN(R). Après calculs (cf Annexe B), on trouve ∇J(x) = Qx et ∇2J(x) = Q.
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La hessienne de la forme quadratique J(x) =
1

2
xTQx est la matrice Q elle-même. Elle

est donc définie positive, ce qui montre que J est strictement convexe. De plus, J est
coercive. En effet,

lim
∥h∥→+∞

J(h) = lim
∥h∥→+∞

dt∥h∥2 = +∞ (car dt > 0)

4.4.2 Étude de l’ensemble des contrôles admissibles

On note C l’ensemble des contrôles admissibles.

C :=
{
h ∈ RN

∣∣Mh = −ANY0
}

C =
{
h ∈ RN

∣∣Mh+ ANY0 = 0
}

C =
{
h ∈ RN

∣∣Mh = 0
}
+ ANY0

Notons V :=
{
h ∈ RN |Mh = 0

}
.

V est un sous-espace vectoriel de RN en tant que noyau de l’endomorphisme de RN

h 7→Mh. ANY0 est un point de RN . Ainsi, C est un sous-espace affine de RN . Il est donc
non vide, fermé et convexe.
En effet, V est fermé dans RN en tant que sous-espace vectoriel d’un espace vectoriel de
dimension finie. Or C est l’image de V par la translation de RN X 7→ X + ANY0. C’est
un homéomorphisme de RN (bijectif, continu, d’inverse X 7→ X − ANY0 continu).
Donc C est fermé.
De plus, soit λ ∈ [0, 1] et (x, y) ∈ C2. On dispose de vx et vy dans V tels que :

x = vx + ANy0
y = vy + ANy0

Alors,

(1− λ)x+ λy = (1− λ)(vx + ANy0) + λ(vy + ANy0)

(1− λ)x+ λy = (1− λ)vx + λvy + ANy0

Comme V est un sous-espace vectoriel de RN , il est stable par combinaison linéaire.
Donc

(1− λ)vx + λvy ∈ V

On en déduit que (1− λ)x+ λy ∈ C.
C est convexe.
Enfin, remarquons que la matrice M =

(
AN−1B AN−2B · · · AB B

)
est de rang au

moins 2 et que par conséquent MMT est inversible. Ce résultat sera indispensable dans
les sections suivantes.

Analyse du rang de M
Toutes les colonnes de M sont non nulles car les matrices Ak, k ∈ {0, . . . , N − 1} sont

inversibles et que B ̸=
(
0
0

)
. Supposons que la sous-famille (B,AB) des colonnes de M

soit liée. Comme elles sont non-nulles, on dispose de λ ∈ R tel que :
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AB = λB

⇐⇒

(
1 ∆t

−g
l
∆t 1

)(
0

∆t

)
= λ

(
0

∆t

)

⇐⇒

(
∆t2

∆t

)
=

(
0

λ∆t

)

=⇒ ∆t2 = 0

C’est absudre.
Donc (B,AB) est libre.
Ainsi,

rang(M) = dim
(
Vect

((
AN−1B AN−2B · · · A1B B

)))
=⇒ rang(M) ≥ dim (Vect(B,AB))

=⇒ rang(M) ≥ 2

Inversibilité de MMT

Par définition du produit matriciel, MMT ∈ M2,2(R).
Comme rang(M) = rang(MMT ) (voir Annexe D pour une preuve) et qu’une matrice
carrée de taille 2 est de rang au plus 2, on dispose des inégalités :

2 ≤ rang(M) et rang(MMT ) ≤ 2

Desquelles on déduit :

rang(MMT ) = 2

MMT est dès lors inversible.

4.4.3 Conclusion sur l’existence et l’unicité de la solution du problème

Comme J est strictement convexe et coercive sur RN , et que l’ensemble des contrôles
admissibles est non vide, convexe et fermé le problème de minimisation admet une unique
solution h∗ sur cet ensemble. Le problème étant bien posé nous pouvons à présent envi-
sager sa résolution numérique via une méthode adaptée : la méthode du gradient projeté
à pas fixe.

12
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5 Méthode du gradient projeté pour la commande op-
timale discrète

Rappelons le problème de minimisation dont l’existence de la solution est assurée par la
section précédente : 

min
h∈RN

1

2
hTQh

Mh = b (où b := −ANY0 ∈ R2)

Y0 ∈ R2

Ce type de problème peut être résolu efficacement par une méthode appelée descente de
gradient projetée. Nous allons détailler cette méthode pas à pas.

5.1 Principe de la méthode du gradient

Prenons h ∈ RN .
L’idée de base est simple : on veut descendre dans la direction où la fonction J diminue
le plus rapidement. Cette direction est donnée par le gradient ∇J(h).
On sait que :

∇J(h) = Qh = 2∆t · h.
Fixons le pas α ∈ R∗

+ de la descente et considérons h(n) ∈ C, n ∈ N.
Une itération de descente sans contrainte, partant de h(n) serait alors :

h̃(n+1) := h(n) − α∇J(h(n)) = h(n) − 2α∆t · h(n).
Cela donne :

h̃(n+1) = (1− 2α∆t) · h(n).
Mais cette nouvelle valeur h̃(n+1) ne satisfait pas nécessairement la contrainte Mh = b.
Il faut donc la corriger en la ramenant dans l’ensemble des vecteurs admissibles.

5.2 Projection sur l’ensemble admissible

Rappelons que l’ensemble admissible est défini par :

C = {h ∈ RN |Mh = b}.

L’idée est donc de projeter orthogonalement h̃(n+1) sur C, c’est-à-dire de chercher le
vecteur h(n+1) ∈ C le plus proche de h̃(n+1) au sens de la distance induite par la norme
euclidienne.
La projection orthogonale ΠC(z) d’un vecteur z ∈ RN sur C est donnée par la formule :

ΠC(z) = z −MT (MMT )−1(Mz − b)

Cette formule vient de la méthode des multiplicateurs de Lagrange et garantit que le
nouveau vecteur projeté satisfait exactement la contrainte Mh = b. Une démonstration
est proposée en Annexe C.

h(n+1) := ΠC

(
h(n) − α∇J(h(n))

)
13
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5.3 Algorithme du gradient projeté

Nous décrivons ici un algorithme pas à pas à appliquer numériquement :

1. Initialisation :
— Choisir un vecteur h(0) ∈ RN (par exemple le vecteur nul).
— Fixer un pas α > 0, typiquement petit (ex. α = 10−3).

2. Itérations : pour n = 0, 1, 2, . . ., jusqu’à convergence :
(a) Gradient : ∇J(h(n)) = Qh(n) = 2∆t · h(n)

(b) Descente : h̃(n+1) = h(n) − αQh(n)

(c) Projection :

h(n+1) = ΠC(h̃
(n+1)) = h̃(n+1) −MT (MMT )−1(Mh̃(n+1) − b)

3. Arrêt : lorsque ∥h(n+1) − h(n)∥ < ε, on considère que la solution a convergé.

Remarques

— L’algorithme converge vers la solution unique du problème si α est suffisamment
petit.

— La projection garantit que chaque itéré reste faisable.
— Cette méthode est simple, efficace, et parfaitement adaptée aux problèmes quadra-

tiques avec contraintes linéaires.

Convergence de l’algorithme du gradient projeté plus détaillée

Nous voulons démontrer que la suite (h(n))n∈N générée par l’algorithme du gradient
projeté converge vers la solution unique du problème d’optimisation :

min
h∈RN , Mh=b

1

2
hTQh.

Cadre du problème
— La fonction coût J(h) = 1

2
hTQh est de classe C1, strictement convexe, et coercive,

car Q = 2∆t · I ≻ 0.
— L’ensemble admissible C = {h ∈ RN |Mh = b} est un sous-espace affine de RN .
Dans ce cadre, le problème possède une unique solution optimale h∗.

Structure de l’algorithme L’algorithme s’écrit comme une suite d’opérations de la
forme :

h̃(n+1) = h(n) − αQh(n)

h(n+1) = ΠC(h̃
(n+1))

Soit ΠC la projection orthogonale sur C, alors l’algorithme devient :

h(n+1) = ΠC

(
(I − αQ)h(n)

)
.

14
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Pourquoi cette suite est contractante
— Le gradient ∇J(h) = Qh implique que l’opérateur T := I − αQ est linéaire et

symétrique. Si Q ≻ 0, alors les valeurs propres de T sont 1− 2α∆t ∈ (0, 1) si α est
bien choisi.

— En norme euclidienne, on a donc :

∥T (x)− T (y)∥ = ∥(I − αQ)(x− y)∥ ≤ κ∥x− y∥ avec κ < 1.

Donc T est contractant.
— De plus, la projection orthogonale ΠC est 1-Lipschitzienne, c’est-à-dire :

∥ΠC(x)− ΠC(y)∥ ≤ ∥x− y∥ ∀x, y ∈ RN .

Cette propriété est un résultat général des projections orthogonales sur des sous-
espaces convexes fermés.

En composant les deux, on obtient que l’opérateur total F (h) := ΠC((I − αQ)h) est
contractant si α est suffisamment petit.

Par le théorème du point fixe de Banach, une telle application contractante admet un
unique point fixe h∗ et la suite h(n) → h∗ converge linéairement.

Critère d’arrêt et justification L’algorithme est arrêté lorsque :

∥h(n+1) − h(n)∥ < ε.

Cela signifie que la suite a été suffisamment stabilisée, i.e. que deux projections consécu-
tives sont très proches. Comme h(n) → h∗ linéairement, la différence entre itérées succes-
sives diminue exponentiellement. Un tel critère permet donc de détecter efficacement que
l’on est arbitrairement proche du minimum exact.

Conclusion Sous le choix d’un pas α ∈
(
0, 1

∥Q∥

)
, la suite (h(n)) converge linéairement

vers l’unique solution h∗ du problème. Cela démontre la validité théorique de l’algorithme
et justifie rigoureusement le critère d’arrêt utilisé en pratique.

Illustration géométrique de l’algorithme du gradient projeté : descente dans la direction −∇J(h)
suivie d’une projection orthogonale sur l’ensemble admissible C = {h | Mh = b}.

15
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La figure 3 résume visuellement le fonctionnement de l’algorithme du gradient projeté.
Depuis un point initial h(n), on descend selon le gradient −∇J(h(n)), ce qui amène un
point h̃(n+1) hors de la contrainte Mh = b. On applique ensuite une projection orthogonale
sur l’ensemble admissible C pour obtenir un point réalisable h(n+1). La répétition de ce
processus contractant permet de converger vers la solution optimale h∗. Ce schéma permet
de mieux comprendre la mécanique géométrique sous-jacente au processus.

5.4 Résolution numérique du problème d’optimisation

Nous implémentons la méthode du gradient projeté sur Python pour résoudre le problème
d’optimisation quadratique suivant :

min
h∈RN

1

2
hTQh

Mh = b

Y0 ∈ R2

Nous choisissons les paramètres numériques suivants :
— durée de la simulation : T = 1.0 s,
— taille du vecteur : N = 2000,
— Conditions initiales : θ0 = 0.8, θ̇0 = 0,
— Tolérance de convergence : ε = 10−6.

Voici quelques résultats :

Commande optimale h(t), angle θ(t) obtenus par gradient projeté

Temps (s) h(t) θ(t) θ̇(t)

0.0000 0.003777 0.800000 0.000000
0.0005 0.011621 0.800000 -0.003517
0.0010 0.019464 0.799998 -0.007030
0.0015 0.027308 0.799995 -0.010538
0.0020 0.035151 0.799989 -0.014043

Valeurs discrètes des premières itérations de h(t), θ(t) et θ̇(t)
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Conclusion
On observe que le vecteur h ∈ C déterminé par la méthode du gradient projeté à pas
fixe ramène le pendule en temps fini à sa position d’équilibre stable (θ, θ̇) = (0, 0).
Cette simulation valide le fonctionnement de l’algorithme. Dans la suite, on s’intéresse
au problème linéarisé mais non discrétisé que l’on traite dans un espace de Hilbert.

6 Formulation variationnelle rigoureuse
On considère le problème d’optimisation suivant :

min
Θ∈H

J (Θ) =

∫ 1

0

(
Θ̈(t) + ω2Θ(t)

)2
dt,

avec :
H = H1

0 (0, 1) ∩H2(0, 1),

qui est un espace de Hilbert. Afin de bien comprendre le cadre fonctionnel, nous rappelons
ici les définitions des espaces utilisés.

Définitions des espaces

— L’espace H1(0, 1) est constitué des fonctions u ∈ L2(0, 1) dont la dérivée faible u′
existe et appartient aussi à L2(0, 1).

— L’espace H1
0 (0, 1) est le sous-espace de H1(0, 1) formé des fonctions qui s’annulent

aux bords : u(0) = u(1) = 0. On l’identifie comme l’adhérence de C∞
c (0, 1) dans la

norme H1.
— L’espace H2(0, 1) est l’ensemble des fonctions u ∈ L2(0, 1) dont les dérivées faibles

u′ et u′′ appartiennent à L2(0, 1).
L’intersection H = H1

0 (0, 1) ∩ H2(0, 1) regroupe donc les fonctions de classe H2 qui
s’annulent en 0 et 1 au sens des traces. C’est un espace de Hilbert, muni de la norme
suivante :

∥ϕ∥2H := ∥ϕ∥2H1 + ∥ϕ̈∥2L2 .

Réduction par décalage admissible

Soit Θ̃ ∈ H2(0, 1) telle que :

Θ̃(0) = Θ0,
˙̃
Θ(0) = Θ̇0, Θ̃(1) = 0,

˙̃
Θ(1) = 0.

On pose alors ϕ = Θ− Θ̃, ce qui implique que ϕ ∈ H.
Le problème d’optimisation devient :

min
ϕ∈H

J (ϕ+ Θ̃) =

∫ 1

0

(
ϕ̈(t) + ω2ϕ(t) +

¨̃
Θ(t) + ω2Θ̃(t)

)2
dt.

Explication

Pourquoi utiliser H1
0 (0, 1) ∩ H2(0, 1) ? L’espace H2(0, 1) est nécessaire car on tra-

vaille avec une fonctionnelle qui fait intervenir Θ̈, donc une dérivée d’ordre 2. L’espace
H1

0 (0, 1) garantit que les fonctions et leurs dérivées premières s’annulent aux extrémités.
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L’intersection des deux permet donc à la fois d’avoir une régularité suffisante (pour que
ϕ̈ ∈ L2) et des conditions aux bords nulles, ce qui est essentiel pour utiliser le théorème
de Lax–Milgram.

Pourquoi faire un décalage ? Le problème initial est posé sur un espace affine U ,
car les conditions aux bords imposent des valeurs non nulles. Pour pouvoir appliquer les
théorèmes variationnels standards (qui nécessitent un espace vectoriel), on effectue un
changement de variable ϕ = Θ − Θ̃, où Θ̃ est une fonction construite pour satisfaire les
conditions aux bords. Le nouveau problème porte alors sur ϕ ∈ H, espace vectoriel de
Hilbert adapté au cadre variationnel.

6.1 Formulation variationnelle

On définit la forme bilinéaire :

a(ϕ, ψ) =

∫ 1

0

(
ϕ̈(t) + ω2ϕ(t)

)(
ψ̈(t) + ω2ψ(t)

)
dt,

et le second membre :

f(ψ) = −
∫ 1

0

(
¨̃
Θ(t) + ω2Θ̃(t)

)(
ψ̈(t) + ω2ψ(t)

)
dt.

On cherche alors à résoudre :

Trouver ϕ ∈ H tel que a(ϕ, ψ) = f(ψ), ∀ψ ∈ H.

Le passage à la formulation variationnelle permet d’associer au problème un système
d’équations (via le principe de minimisation), équivalent à une équation différentielle avec
conditions aux bords. Cette équation est obtenue en cherchant ϕ ∈ H tel que :

a(ϕ, ψ) = f(ψ) ∀ψ ∈ H,

où a(·, ·) est une forme bilinéaire continue et coercive, et f est une forme linéaire continue.
Le cadre de Lax–Milgram garantit alors existence et unicité.

Pourquoi la solution est optimale ? La fonctionnelle J est convexe (même stricte-
ment convexe) car c’est une intégrale d’un carré. L’ensemble H est un espace de Hilbert,
donc convexe et fermé. Dans ce cadre, toute solution du problème variationnel correspond
au minimum global de J .

En résumé Ce changement de cadre est une étape classique en calcul des variations : on
transforme un problème avec contraintes (bord) en un problème sans contrainte dans un
espace de Hilbert, en imposant ces contraintes dans le choix de Θ̃. Cela permet d’utiliser
toute la puissance des outils fonctionnels pour prouver l’existence, l’unicité, et même la
stabilité de la solution.
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6.2 Énoncé et démonstration du théorème de Lax–Milgram

Énoncé Soit H un espace de Hilbert réel. Soit a : H × H → R une forme bilinéaire
vérifiant :

— (continuité) ∃C > 0 tel que |a(u, v)| ≤ C∥u∥∥v∥ ∀u, v ∈ H,
— (coercivité) ∃α > 0 tel que a(v, v) ≥ α∥v∥2 ∀v ∈ H.

Alors, pour tout f ∈ H ′, il existe un unique u ∈ H tel que :

a(u, v) = f(v) ∀v ∈ H.

Démonstration 1. Construction de l’opérateur associé.
Pour tout u ∈ H, l’application v 7→ a(u, v) est une forme linéaire continue. Par le

théorème de Riesz, il existe un unique élément Au ∈ H tel que :

a(u, v) = ⟨Au, v⟩, ∀v ∈ H.

On définit ainsi un opérateur A : H → H. Il est linéaire par construction.
2. Injectivité de A.
D’après la coercivité de a, on a :

α∥u∥2 ≤ a(u, u) = ⟨Au, u⟩ ≤ ∥Au∥ · ∥u∥ ⇒ α∥u∥ ≤ ∥Au∥.

Donc ∥Au∥ = 0 ⇒ u = 0, ce qui montre que A est injectif.
3. Fermeture de l’image de A.
Soit (wn) ⊂ Im(A) telle que wn → w dans H. Il existe un ∈ H tel que Aun = wn. On

a :
∥Aum − Aun∥ ≥ α∥um − un∥ ⇒ (un) est de Cauchy ⇒ un → u ∈ H.

Par continuité de A, on a Aun → Au, donc w = Au, et Im(A) est fermé.
4. Surjectivité.
Soit v ∈ Im(A)⊥. Alors :

∀u ∈ H, ⟨v,Au⟩ = 0 ⇒ a(u, v) = 0.

En particulier, a(v, v) = 0 ⇒ ∥v∥ = 0 par coercivité, donc v = 0. Ainsi :

Im(A)⊥ = {0} ⇒ Im(A) = H ⇒ Im(A) = H.

5. Existence et unicité.
Par le théorème de Riesz, ℓ(v) = ⟨x0, v⟩ pour un certain x0 ∈ H. Le problème devient :

∀v ∈ H, ⟨Au− x0, v⟩ = 0 ⇒ Au = x0.

Comme A est bijectif, il existe un unique u ∈ H tel que Au = x0. Donc :

a(u, v) = ℓ(v), ∀v ∈ H.

Conclusion L’application A est un isomorphisme de H sur son dual, et la solution
u ∈ H est unique. Le problème admet donc une unique solution faible.
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6.3 Application de Lax–Milgram

— H est un espace de Hilbert.
— a est bilinéaire, symétrique, continue :

|a(ϕ, ψ)| ≤ C∥ϕ∥H∥ψ∥H ,

pour une certaine constante C > 0.
— a est coercive :

a(ϕ, ϕ) ≥ α∥ϕ∥2H ,

pour un certain α > 0.
— f ∈ H ′ est une forme linéaire continue.
Par le théorème de Lax–Milgram, il existe donc une unique solution ϕ ∈ H vérifiant :

a(ϕ, ψ) = f(ψ), ∀ψ ∈ H.

Démonstration rigoureuse des hypothèses du théorème de Lax–Milgram

Nous détaillons ici rigoureusement la vérification des conditions du théorème de Lax–Milgram
appliqué à notre problème variationnel.

1. Continuité de la forme bilinéaire a(·, ·) On considère la forme bilinéaire définie
par :

a(ϕ, ψ) :=

∫ 1

0

(
ϕ̇(t)ψ̇(t) + ω2ϕ(t)ψ(t) + ϕ̈(t)ψ̈(t)

)
dt.

Nous utilisons l’inégalité de Cauchy–Schwarz dans L2(0, 1) pour chaque terme :∣∣∣∣∫ 1

0

ϕ̇ψ̇

∣∣∣∣ ≤ ∥ϕ̇∥L2∥ψ̇∥L2 ,∣∣∣∣ω2

∫ 1

0

ϕψ

∣∣∣∣ ≤ ω2∥ϕ∥L2∥ψ∥L2 ,∣∣∣∣∫ 1

0

ϕ̈ψ̈

∣∣∣∣ ≤ ∥ϕ̈∥L2∥ψ̈∥L2 .

En additionnant, on obtient :

|a(ϕ, ψ)| ≤ ∥ϕ̇∥L2∥ψ̇∥L2 + ω2∥ϕ∥L2∥ψ∥L2 + ∥ϕ̈∥L2∥ψ̈∥L2 .

Or, la norme dans H := H1
0 (0, 1) ∩H2(0, 1) est donnée par :

∥ϕ∥2H := ∥ϕ∥2L2 + ∥ϕ̇∥2L2 + ∥ϕ̈∥2L2 .

Dès lors, on majore chaque terme par ∥ϕ∥H∥ψ∥H , et il existe une constante C > 0
telle que :

|a(ϕ, ψ)| ≤ C∥ϕ∥H∥ψ∥H .

Ce qui prouve la continuité de a sur H ×H.
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2. Coercivité de a(·, ·) On calcule a(ϕ, ϕ) directement :

a(ϕ, ϕ) =

∫ 1

0

(
|ϕ̇(t)|2 + ω2|ϕ(t)|2 + |ϕ̈(t)|2

)
dt.

Tous les termes sont positifs et l’intégrale donne exactement la norme ∥ϕ∥2H :

a(ϕ, ϕ) = ∥ϕ̇∥2L2 + ω2∥ϕ∥2L2 + ∥ϕ̈∥2L2 = ∥ϕ∥2H .

Par conséquent, la coercivité est satisfaite avec α = 1, ce qui est une coercivité stricte :

a(ϕ, ϕ) ≥ ∥ϕ∥2H = α∥ϕ∥2H .

3. Continuité de la forme linéaire f La forme linéaire est définie par :

f(ψ) := −
∫ 1

0

(
¨̃
Θ(t) + ω2Θ̃(t)

)(
ψ̈(t) + ω2ψ(t)

)
dt.

On note g(t) :=
¨̃
Θ(t) + ω2Θ̃(t) ∈ L2(0, 1) car Θ̃ ∈ H2(0, 1) ⇒ ¨̃

Θ ∈ L2 et Θ̃ ∈ L2.
Alors :

|f(ψ)| ≤ ∥g∥L2 · ∥ψ̈ + ω2ψ∥L2 .

On majore :
∥ψ̈ + ω2ψ∥L2 ≤ ∥ψ̈∥L2 + ω2∥ψ∥L2 ≤ C∥ψ∥H .

Ainsi, il existe une constante Cf > 0 telle que :

|f(ψ)| ≤ Cf∥ψ∥H .

Donc f est une forme linéaire continue sur H.

Conclusion Toutes les hypothèses du théorème de Lax–Milgram sont rigoureusement
vérifiées :

— a est bilinéaire, symétrique, continue et coercive sur H,
— f est linéaire continue sur H.
Le théorème garantit alors l’existence et l’unicité d’une solution ϕ ∈ H au problème

variationnel :
a(ϕ, ψ) = f(ψ), ∀ψ ∈ H.

6.3.1 Conclusion : unicité de la solution optimale

On reconstruit la solution du problème initial :

Θ = ϕ+ Θ̃,

et le contrôle optimal associé est donné par :

h(t) = Θ̈(t) + ω2Θ(t).

Puisque Θ ∈ H2(0, 1), on a bien h ∈ L2(0, 1).
La coercivité de a entraîne la stricte convexité de la fonctionnelle J , ce qui assure

l’unicité de la solution optimale dans l’espace H.
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7 Caractérisation optimale et suite naturelle après Lax–
Milgram

Dans la section précédente, nous avons démontré l’existence et l’unicité d’une solution
Θ ∈ H2(0, 1), minimisant la fonctionnelle

J (Θ) =

∫ 1

0

(Θ̈(t) + ω2Θ(t))2dt,

sous les conditions aux bords imposées.
Cependant, le théorème de Lax–Milgram, bien qu’essentiel, ne fournit qu’une évidence

d’existence et d’unicité — il ne dit rien de la forme de la solution. La question naturelle
est alors : peut-on aller plus loin ? Peut-on caractériser explicitement, à l’aide de l’analyse
fonctionnelle et des outils variationnels, la nature profonde de cette solution ? La réponse
est oui. Et cette section s’y consacre .

1. Réduction en un problème variationnel canonique

On cherche ϕ ∈ H := H1
0 (0, 1) ∩H2(0, 1) tel que :

a(ϕ, ψ) = f(ψ), ∀ψ ∈ H,

où :

a(ϕ, ψ) =

∫ 1

0

(ϕ̈+ ω2ϕ)(ψ̈ + ω2ψ) dt,

f(ψ) = −
∫ 1

0

(
¨̃
Θ + ω2Θ̃)(ψ̈ + ω2ψ) dt.

2. Dérivation de l’équation d’Euler–Lagrange

On pose Θ = ϕ + Θ̃ et considère une variation ψ ∈ H. On calcule la différentielle de
la fonctionnelle en direction ψ :

δJ (Θ)[ψ] =
d

dε
J (Θ + εψ)

∣∣∣∣
ε=0

=

∫ 1

0

(Θ̈ + ω2Θ)(ψ̈ + ω2ψ) dt.

On veut maintenant exprimer cette condition de stationnarité sous forme d’une équa-
tion différentielle.

Intégration par parties :
On applique deux fois l’intégration par parties : -

∫ 1

0
Θ̈ψ̈ dt =

∫ 1

0
Θ(4)ψ dt, -

∫ 1

0
Θ̈ψ dt =

−
∫ 1

0
Θ̇ψ̇ dt =

∫ 1

0
Θψ̈ dt = −

∫ 1

0
Θ̈ψ dt, etc.

En combinant les identités et en annulant les bords (car ψ(0) = ψ(1) = ψ̇(0) = ψ̇(1) =
0), on obtient : ∫ 1

0

[
Θ(4) − 2ω2Θ̈ + ω4Θ

]
ψ(t) dt = 0, ∀ψ ∈ H.

Par le théorème fondamental du calcul variationnel, cela implique :

Θ(4)(t)− 2ω2Θ̈(t) + ω4Θ(t) = 0 dans (0, 1).
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3. Unicité fonctionnelle et différentielle

L’équation obtenue est une EDO linéaire d’ordre 4, avec 4 conditions aux bords (2 en
0, 2 en 1). Il s’agit donc d’un problème de Cauchy–Dirichlet bien posé, et il admet une
unique solution régulière dans H2(0, 1).

Or, cette solution est aussi celle obtenue via Lax–Milgram. Cela confirme que le mi-
nimum de la fonctionnelle est atteint pour la solution Θ ∈ H qui satisfait l’EDO d’ordre
4 dérivée de façon variationnelle.

Conclusion

Nous avons établi que le minimiseur unique du problème d’optimisation satisfait une
équation d’Euler–Lagrange forte d’ordre 4. Ce résultat relie rigoureusement l’analyse va-
riationnelle abstraite au cadre classique de l’analyse différentielle, et permet d’approcher
la solution via des méthodes analytiques ou numériques adaptées à des équations diffé-
rentielles à conditions aux bords.

4. Dérivation de l’équation d’Euler–Lagrange

En utilisant la méthode des variations, on a montré que toute solution Θ minimisant
J vérifie l’équation différentielle d’ordre 4 suivante :

Θ(4)(t)− 2ω2Θ̈(t) + ω4Θ(t) = 0, pour tout t ∈ (0, 1),

accompagnée des conditions aux bords :

Θ(0) = Θ0, Θ̇(0) = Θ̇0, Θ(1) = 0, Θ̇(1) = 0.

Cette EDO est linéaire à coefficients constants, et admet donc une solution explicite.

5. Résolution explicite de l’équation optimale

On cherche une solution de la forme exponentielle. L’équation caractéristique associée
est :

λ4 − 2ω2λ2 + ω4 = 0.

En posant z = λ2, on obtient :

z2 − 2ω2z + ω4 = 0 ⇒ z = ω2 ⇒ λ = ±ω (multiplicité 2).

La solution générale de l’EDO est donc :

Θ(t) = (A+Bt)eωt + (C +Dt)e−ωt,

avec A,B,C,D ∈ R des constantes à déterminer.
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6. Conditions aux bords et système linéaire

Nous appliquons les conditions aux bords pour identifier les constantes.

Θ(0) = A+ C = Θ0

Θ̇(0) = ωA+B − ωC +D = Θ̇0

Θ(1) = (A+B)eω + (C +D)e−ω = 0

Θ̇(1) = (ω(A+B) +B)eω + (−ω(C +D) +D)e−ω = 0

Nous obtenons ainsi un système linéaire de 4 équations à 4 inconnues :
A+ C = Θ0

ωA+B − ωC +D = Θ̇0

(A+B)eω + (C +D)e−ω = 0

(ω(A+B) +B)eω + (−ω(C +D) +D)e−ω = 0

Ce système peut être résolu analytiquement ou numériquement, et permet d’obtenir
une expression complète et explicite de la solution optimale Θ(t).

Conclusion

Nous avons établi que la solution optimale du problème de commande est une fonc-
tion exponentielle affine, dont la forme est entièrement déterminée par les conditions aux
bords. Cette caractérisation analytique constitue un résultat fort, reliant la formulation
variationnelle à une solution concrète, et confirme pleinement la validité de notre approche
fonctionnelle.

8 Approche Hamiltonienne : cohérence avec la solution
variationnelle

Dans cette section, nous montrons que la solution obtenue précédemment par méthode
variationnelle et analyse dans les espaces de Sobolev vérifie également les conditions du
principe du maximum de Pontryagin. Nous construisons le système état–adjoint et
vérifions que la solution explicite obtenue satisfait les conditions d’optimalité hamilto-
nienne.

1. Formulation du problème de contrôle optimal

On considère le système dynamique linéaire suivant :

θ̇1(t) = θ2(t),

θ̇2(t) = h(t)− ω2θ1(t),

avec les conditions initiales :

θ1(0) = Θ0, θ2(0) = Θ̇0,

et les conditions terminales :
θ1(1) = 0, θ2(1) = 0.
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Le coût à minimiser est :

J(h) =

∫ 1

0

h(t)2dt.

Il s’agit donc d’un problème de contrôle linéaire-quadratique.

2. Hamiltonien et principe du maximum de Pontryagin

On définit le vecteur d’état :

x(t) =

(
θ1(t)
θ2(t)

)
, u(t) = h(t),

le vecteur adjoint p(t) =
(
p1(t)
p2(t)

)
, et les matrices :

A =

(
0 1

−ω2 0

)
, B =

(
0
1

)
.

Le Hamiltonien est :

H(x, u, p) = pT (Ax+Bu)− 1

2
u2 = p1θ2 + p2(h− ω2θ1)−

1

2
h2.

La condition de maximisation impose :

∂H

∂h
= p2 − h = 0 ⇒ h(t) = p2(t).

3. Système état–adjoint complet

On obtient le système couplé suivant :

θ̇1(t) = θ2(t),

θ̇2(t) = p2(t)− ω2θ1(t),

ṗ1(t) = ω2p2(t),

ṗ2(t) = −p1(t).

Ce système est linéaire d’ordre 1 mais de dimension 4. Il peut être vu comme une
équation d’ordre 4 en θ1, car :

θ̈1 = θ̇2 = ṗ2 − ω2θ̇1 = −p1 − ω2θ2,...
θ 1 = −ṗ1 − ω2θ̈1 = −ω2p2 − ω2θ̈1,

θ
(4)
1 = −ω2ṗ2 − ω2

...
θ 1 = ω2p1 − ω2(−ω2p2 − ω2θ̈1).

En injectant, on retrouve finalement l’EDO :

θ
(4)
1 − 2ω2θ̈1 + ω4θ1 = 0.

Conclusion : la trajectoire optimale θ1(t) vérifie la même équation d’ordre 4 que
celle obtenue via la formulation variationnelle. Ainsi, la solution optimale est la même,
que l’on adopte une approche analytique (Pontryagin) ou fonctionnelle (Lax–Milgram +
Euler–Lagrange).

Cette cohérence des deux approches renforce la rigueur de la solution et permet une
lecture théorique à double entrée : soit via les espaces de Sobolev, soit via la mécanique
classique du contrôle optimal.
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9 Analyse fonctionnelle avancée : compacité, spectre et
stabilité

Dans les sections précédentes, nous avons caractérisé rigoureusement la solution du
problème d’optimisation par deux approches : la méthode variationnelle (via Lax–Milgram
et Euler–Lagrange) et le principe de Pontryagin. Ces deux approches conduisent à une
équation différentielle linéaire d’ordre 4, dont la solution est explicitable.

Nous proposons ici une extension fonctionnelle plus abstraite, visant à :
— poser le problème dans un cadre opérateur plus général,
— justifier la compacité et la structure spectrale du problème,
— et préparer le terrain pour une analyse numérique ou variationnelle (type Galerkin).

1. Reformulation par opérateur linéaire

On introduit l’opérateur linéaire :

A : H → L2(0, 1), A(Θ) := Θ̈ + ω2Θ,

où H = H1
0 (0, 1) ∩H2(0, 1).

La fonctionnelle d’énergie s’exprime alors :

J (Θ) = ∥AΘ∥2L2 = ⟨AΘ, AΘ⟩L2 .

L’objectif est donc de minimiser la norme de AΘ sur un espace de Hilbert H.

2. Propriétés de compacité et structure spectrale

Nous savons que l’injection naturelle :

H2(0, 1) ∩H1
0 (0, 1) ↪→↪→ L2(0, 1)

est compacte (théorème de Rellich–Kondrachov).
Conséquence : l’opérateur A est linéaire et continu de H vers L2, donc l’opérateur

composé
T := A∗A : H → H,

est un opérateur compact, symétrique, positif défini sur H.
Il vérifie donc les propriétés suivantes :
— T est auto-adjoint : ⟨Tϕ, ψ⟩H = ⟨ϕ, Tψ⟩H ,
— T est compact : toute suite bornée admet une sous-suite fortement convergente,
— le spectre de T est réel, discret, et tend vers 0.

3. Problème spectral associé et base hilbertienne

Le problème spectral associé consiste à résoudre :

A∗Aϕ = λϕ, ϕ ∈ H.

Cela revient à chercher les fonctions propres de T , qui forment une base hilbertienne
orthonormée de H. Toute fonction Θ ∈ H peut alors s’écrire sous forme de série :

Θ =
∞∑
n=1

αnϕn, avec ϕn solution de Tϕn = λnϕn.
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Avantage : cette base permet d’envisager des méthodes variationnelles approchées
par projection (Galerkin) ou de décomposer la solution dans un cadre spectral rigoureux.

4. Remarque finale

Nous n’approfondissons pas cette piste dans le cadre de ce projet, mais elle constitue
une voie théorique naturelle à explorer. L’étude spectrale de l’opérateur T = A∗A offre
des perspectives solides en matière de stabilité, de décomposition fonctionnelle et d’ap-
proximations numériques via des méthodes comme Galerkin ou les bases propres. Cela
pourrait faire l’objet d’un prolongement rigoureux du travail présenté ici.

Conclusion générale
Ce projet a permis d’étudier un problème de commande optimale pour un système

linéaire de type pendule, dans un cadre à la fois numérique, variationnel et analytique.
Nous avons formulé le problème dans un espace de Sobolev adapté, démontré l’existence
et l’unicité d’une solution par le théorème de Lax–Milgram, dérivé l’équation d’Euler–
Lagrange associée, et trouvé une solution explicite à l’aide d’outils d’analyse.

Nous avons ensuite confirmé l’optimalité par une deuxième approche via le principe
du maximum de Pontryagin, et enfin ouvert une piste vers une analyse spectrale abstraite
du problème en introduisant la notion d’opérateur compact autoadjoint.

Ce parcours illustre l’unité profonde entre analyse fonctionnelle, contrôle optimal,
et méthodes de résolution concrètes — et montre que l’étude rigoureuse d’un problème
appliqué peut naturellement conduire à des questions de recherche théoriques riches.

27



Optimisation du retour à l’équilibre Projet de mathématiques

A Étude complémentaire des fonctions de contrôle
Cas 3 : h(t) = 2 sin(2πt) (contrôle périodique lent)

Un forçage régulier peut provoquer une résonance si la fréquence est proche de celle du
pendule.

Contrôle sinusoïdal lent h(t) = 2 sin(2πt)

Cas 4 : h(t) = 5t(1− t/T ) (contrôle en cloche)
Cette impulsion transitoire simule une poussée progressive, puis décroissante, centrée au-
tour de T/2.

Contrôle en cloche h(t) = 5t(1− t/T )
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Cas 5 : h(t) = 30 si 2.5 < t < 2.7 (choc ponctuel) Un choc bref et intense produit
une perturbation nette du mouvement.

Impulsion localisée : h(t) = 30 si 2.5 < t < 2.7

Cas 6 : h(t) = −5 sin(5t) (forçage rapide)
Une excitation rapide qui provoque des oscillations complexes, voire chaotiques.

Forçage rapide h(t) = −5 sin(5t)
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B Gradient et hessienne d’une forme quadratique

On considère la forme quadratique J :

RN → R

h 7→ 1

2
hTQh

et on démontre que

∇J(x) = Qx et ∇2J(x) = Q.

Soit x =


x1
x2
...
xN

 ∈ RN .

Explicitons J(x),

J(x) =
1

2
xTQx =

1

2

n∑
i=1

n∑
j=1

xiQi,jxj

Soit k ∈ J1, NK.
On calcule la dérivée partielle par rapport à xk.
Par linéarité de la dérivation :

∂J

∂xk
=

1

2

n∑
i=1

n∑
j=1

Qi,j
∂(xixj)

∂xk

Par dérivation d’un produit et en utilisant le symbole de Kronecker δik qui vaut 1 si i=k
et 0 sinon,

∂J

∂xk
(x) =

1

2

n∑
i=1

n∑
j=1

Qi,j(δikxj + δjkxi)

On sépare en deux sommes doubles :

∂J

∂xk
(x) =

1

2

n∑
i=1

n∑
j=1

Qi,jδikxj +
1

2

n∑
i=1

n∑
j=1

Qi,jδjkxi

En simplifiant :
∂J

∂xk
(x) =

1

2

n∑
j=1

Qk,jxj +
1

2

n∑
i=1

Qi,kxi

Comme Q est symétrique, pour tout (k, j) ∈ {1, . . . , N}2 Qk,j = Qj,k. On a donc deux
fois la même somme et on obtient :

∂J

∂xk
(x) =

n∑
j=1

Qk,jxj

On en déduit le gradient de J au point x :
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∇J(x) :=



∂J

∂x1
(x)

∂J

∂x2
(x)

...
∂J

∂xN
(x)


=



N∑
j=1

Q1,jxj

N∑
j=1

Q2,jxj

...
N∑
j=1

QN,jxj


∇J(x) = Qx

Soit (k, ℓ) ∈ J1, NK2.
On calcule la dérivée seconde :

∂2J

∂xk∂xℓ
(x) =

∂

∂xk

(
n∑

j=1

Qℓ,jxj

)
=

(
n∑

j=1

Qℓ,j
∂xj
∂xk

)
= Qℓ,k = Qk,ℓ

Ainsi, la hessienne est :

∇2J(x) :=

(
∂2J

∂xk∂xℓ

)
1≤k,ℓ≤N

= (Qk,ℓ)1≤k,ℓ≤N = Q

∇2J(x) = Q
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C Projeté orthogonal sur le sous-espace affine
On considère un vecteur z := (z1, . . . , zn)

T ∈ RN et le sous-espace affine
C = {h ∈ RN |Mh = 0} + ANY0. On démontre que le projeté orthogonal de z sur C est
donné par h∗ := z −MT (MMT )−1(Mz − b).

Démonstration :
Projeter z orthogonalement sur C, revient à résoudre le problème :{

min
h∈RN

∥h− z∥

Mh = b

Ce problème est équivalent à : {
min
h∈RN

∥h− z∥2

Mh = b

En effet, la fonction t 7→ t2 est strictement croissante sur [0,+∞), donc le minimisant est
inchangé. Cette reformulation est avantageuse car la fonction h 7→ ∥h − z∥2 est différen-
tiable, convexe et coercive sur RN , ce qui facilite l’analyse.
L’ensemble admissible C est non vide, fermé et convexe et la fonction objectif est
strictement convexe. Par conséquent, le problème admet une solution unique.

Pour résoudre ce problème, on utilise la méthode des multiplicateurs de Lagrange.
RN ×R2 est identifié à RN+2 via la concaténation de vecteur qui est un isomorphisme. Le
lagrangien associé L est donné par :

∀(h, λ) ∈ RN × R2 L(h, λ) := ∥h− z∥2 + λT (Mh− b),

Soit (h1, . . . , hn) ∈ RN , (λ1, λ2) ∈ R2 et (k, l) ∈ {1, . . . , N} × {1, 2}.
Calculons les dérivées partielles de L par rapport à ses différentes variables.
En explicitant les termes définissant L :

dL
dhk

(h, λ) =
d

dhk
[

N∑
i=0

(hi − zi)
2 + λ1(

N∑
i=0

m1,ihi − bi) + λ2(
N∑
i=0

m2,ihi − bi)]

dL
dhk

(h, λ) = 2(hk − zk) + λ1m1,k + λ2m2,k

dL
dλl

(h, λ) =
d

dλl
[

N∑
i=0

(hi − zi)
2 + λ1(

N∑
i=0

m1,ihi − bi) + λ2(
N∑
i=0

m2,ihi − bi)]

dL
dλl

(h, λ) =
N∑
i=1

(ml,ihi − bi)

D’où,
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∇L(h, λ) =



∂L
∂h1

(h, λ)
∂L
∂h2

(h, λ)
...

∂L
∂hN

(h, λ)
∂L
∂λ1

(h, λ)
∂L
∂λ2

(h, λ)


=



2(h1 − z1) + λ1m1,1 + λ2m2,1

2(h2 − z2) + λ1m1,2 + λ2m2,2
...

2(hN − zN) + λ1m1,N + λ2m2,N∑N
i=1(m1,jhi − bi)∑N
i=1(m2,jhi − bi)


Ce qui se réécrit :

∇L(h, λ) =
[
2(h− z) +MTλ

Mh− b

]
Les conditions de régularité sont satisfaites, car les contraintes sont affines et M est de
rang 2, donc ses lignes sont linéairement indépendantes. La théorie des multiplicateurs de
Lagrange s’applique, et il suffit alors de résoudre le système des conditions stationnaires
de premier ordre :

∇L(h1, . . . , hn, λ1, λ2) = 0 ⇐⇒

{
2(h− z) +MTλ = 0

Mh = b

Ce système linéaire admet une solution unique grâce à la coercivité de la fonctionnelle et
à la régularité des contraintes. La résolution de ce système fournit donc directement la
projection orthogonale recherchée, sans qu’il soit nécessaire d’examiner des conditions du
second ordre. {

2(h− z) +MTλ = 0

Mh = b
⇐⇒

h = z − 1

2
MTλ

Mh = b

⇐⇒


h = z − 1

2
MTλ

M

(
z − 1

2
MTλ

)
= b

⇐⇒

h = z − 1

2
MTλ

MMTλ = 2(Mz − b)

La matrice MMT étant inversible,

⇐⇒

h = z − 1

2
MTλ,

λ = 2(MMT )−1(Mz − b)
=⇒ h∗ = z −MT (MMT )−1(Mz − b)
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D Sur l’égalité rang(MMT ) = rang(M)

Pour démontrer l’inversibilité de MMT dans la sous-section 4.4.2 nous avons utilisé le
résultat d’algèbre linéaire non trivial rang(M) = rang(MMT ) que l’on redémontre ci-
dessous.

Démonstration :
On commence par montrer l’égalité ker(MMT ) = ker(MT ).
On a déjà trivialement l’inclusion ker(MT ) ⊆ ker(MMT ).
Réciproquement, soit x ∈ ker(MMT ). Alors :

MMTx = 0 ⇐⇒ xTMMTx = 0

Or :

xTMMTx = (MTx)TMTx = ∥MTx∥2

donc

∥MTx∥2 = 0

=⇒ MTx = 0 (séparation de la norme)
=⇒ x ∈ ker(MT )

Ce qui prouve ker(MT ) ⊇ ker(MMT ).
Donc

ker(MMT ) = ker(MT )

On obtient par égalité des dimensions :

dim(ker(MMT )) = dim(ker(MT ))

D’après le théorème du rang,
Pour toute matrice A ∈ Mp,q(R), on a : rang(A) = q − dim(kerA).

D’où les égalités successives :

rang(MMT ) = m− dim(ker(MMT )) = m− dim(ker(MT )) = rang(MT )

De rang(MT ) = rang(M), on déduit finalement

rang(MMT ) = rang(M)

Ce qui conclut la preuve.
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