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1 Introduction

Ce projet traite du retour a ’état d’équilibre stable en temps fini d’un pendule simple
via une force de contréle ¢ — h(t), que 'on souhaite optimiser afin de minimiser 1’énergie
consommée. Aprés avoir modélisé le systéme dynamique par une équation différentielle non
linéaire, nous en dérivons une version discrétisée a I’aide du schéma d’Euler explicite. Cette
phase initiale permet d’analyser le comportement du pendule sous différentes fonctions
de contrdle choisies empiriquement (constante, sinusoidale, impulsion, rétroaction). Nous
nous plagons par la suite dans le cadre des petites oscillations, ce qui permet de linéariser
la dynamique du systéme.

Une fois le probléme d’optimisation discrétisé, il prend la forme d’une minimisation
quadratique sous contraintes dynamiques linéaires. Nous en proposons une résolution
numérique via la méthode du gradient projeté a pas fixe, en détaillant sa mise en ceuvre,
sa convergence, et la construction de la projection sur I’ensemble admissible.

Enfin, nous établissons une formulation variationnelle rigoureuse du probléme d’opti-
misation dans un espace de Sobolev adapté, et montrons, via le théoréme de Lax—Milgram,
I'existence et 1'unicité de la solution optimale. L’analyse conduit & une équation d’Eu-
ler-Lagrange d’ordre 4 que nous résolvons explicitement. Nous concluons en reliant cette
solution & une approche hamiltonienne via le principe de Pontryagin, assurant la cohérence
entre méthode variationnelle et controle optimal.
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2 Modélisation du pendule simple

2.1 Equation différentielle

L’étude est conduite sur 'intervalle temporel [0,1].
Le pendule simple sans frottement soumis a une force de controle externe ¢ — h(t) est
modélisé par ’équation :

Vt e [0,1] 6(t) + w?sin(A(t)) = h(1).

avec :
— 60(t) 'angle du pendule avec la verticale a I'instant t,
— wi=/7
— g l'accélération gravitationnelle,
— [ la longueur du fil,

— h(t) la force de contrdle externe, au moins continue.

2.2 Reéécriture sous forme d’un systéme

Transformons 1’équation en un systéme d’ordre 1. Pour cela on utilise d’abord la

relation % = 6 qui n’est rien de plus que la définition de 2¢. On utilise ensuite la relation
q plus g =

dt 1
0 = —w?sin(f) + h issue de l'équation différentielle, que 'on réécrit, par définition de 6,
% = —w?sin(f) + h. On obtient le systéme suivant :
{z-im =61

B (1) = —w?sin(A(t)) + h(t)

Cette réécriture sous la forme d’un systéme d’ordre 1 i.e ne faisant intervenir que des
dérivées d’ordre 1 par rapport au temps, permet la résolution numérique de ce probléme
grace la méthode d’Euler explicite.
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3 Résolution numérique : Euler explicite

3.1 Principe de la méthode

Si ’on considére une équation différentielle ordinaire d’ordre 1 avec une condition initiale :
y'(t) = ft,yt)) sitel0,1]
y(0) = yo

Connaissant la valeur de y & un instant ¢, € [0,1], on peut, sous réserve que y soit
suffisamment réguliére (par exemple de classe C'), exprimer la valeur de y a l'instant
suivant t, 1 €|t,, 1] & 'aide de la formule :

tht1
/ y/(t) dt = y(tn-i-l) - y(tn)
tn
donc :

yumn:ym»+l%“ﬂamwwt

Tout I'enjeu réside dans 'approximation de l'intégrale fttn"“ ft,y(t))dt.

La méthode d’Euler explicite consiste a approximer cette intégrale par 'aire algébrique
du rectangle de hauteur f(t,,y(t,)) et de largeur ¢,,1 — t,. Soit :

tnt1
[ reu) de e 6 s~ 1)
tn
D’ou le schéma itératif :
{yn—i-l =UYn + (tn—i—l - tn)f(tna yn>

yo = y(0)

Dans notre cas,

) 0(t)
y = (0.) et pour tout ¢t € [0,1],  f(t,y(t)) := (-%sin(@(t)) + h(t)) ‘

3.2 Application au pendule

On obtient ce schéma itératif, permettant de calculer les valeurs de 6(t) et 6(t) de
proche en proche :

gl = gn + (tn-i-l - tn) ’ 011
gn+l — gn + (tn—I—l — tn) . (—% sin(&”) + h(tn)>

Pour simplifier les calculs, on introduit une subdivision réguliére de lintervalle [0, 1],
définie par la suite (t,)o<n<n, 0t N € N* est le nombre de sous-intervalles. Ainsi, pour
tout n € {0,..., N — 1} la différence ¢,1 — t,, est constante.
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On pose alors :

1
At =ty —t, = ¥

De plus,

Vne{0,...,N} t,=—

=

Le schéma devient :

Onir = O + At -0,
Opir = 0, + At - (—% sin(6,,) + h(m) .

3.3 FEtude de différentes fonctions de controle

Parameétres de la simulation
Nous choisissons les conditions initiales suivantes pour le pendule :

0(0) = 0.8 rad, 6(0) =0 rad.s~".

L’intervalle temporel de la simulation est fixé a [0,7] avec T' = 10 secondes. Ce choix
est motivé par le fait qu'un intervalle trop court, comme [0, 1], ne permet pas d’observer
efficacement le comportement du pendule soumis & différentes fonctions de controle h.
Nous effectuons une subdivision réguliére de cet intervalle a ’aide de N = 20000 points,
ce qui permet d’assurer une bonne précision numérique.

Les paramétres physiques du systéme sont les suivants :
— Accélération gravitationnelle : g = 9,81 m - s72
— Longueur du pendule : [ = 1,0m
Nous testons différentes fonctions de controle ¢ — h(t) afin d’observer leur effet sur le

comportement du pendule. Chaque graphique présente ’évolution de #(t) pour un choix
donné de t — h(t).

Cas 1 : h(t) =0 (aucun controle)
Le pendule oscille librement sans intervention externe.

Evolution de 8(t) avec h(t)=0

0.8 h(t) = 0 — 6
0.6 1
0.4 4
0.2 4
=
c
—= 0.0+
=
T
-0.2
—0.4
—-0.6
—-0.8
T
0 2 4 [} 8 10
Temps (s)

Evolution naturelle sans controle externe h(t) = 0
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Cas 2 : h(t) = —36(t) — 26(t) (rétroaction stabilisante)
Ce controle agit comme un correcteur proportionnel-dérivé : il cherche & ramener 6
vers zéro.

Evolution de 6(t) avec h(t) = —36 — 26

0.8 1 N —
h(t) = —36 — 26 e

0.6 +

0.4 1

0.2 1

B(t) (rad)

0.0

—0.2

Temps (s)

Controle par rétroaction h(t) = —30(t) — 20(t)

Les autres fonctions de controle testées, ainsi que I’ensemble des simulations, sont présen-

tées en [Annexe[Al

Conclusion
Les simulations précédentes montrent que certaines formes de controle, notamment par
rétroaction, permettent de stabiliser efficacement le pendule. Toutefois, ces approches
reposent sur des choix empiriques de la fonction ¢ — h(t), sans garantie que l’énergie
dépensée soit minimale.
Cela motive une démarche plus rigoureuse, dans laquelle nous cherchons & déterminer,
parmi toutes les fonctions admissibles, celle qui raméne le pendule & I’équilibre tout en
minimisant I’énergie fournie.
Nous passons donc & une formulation mathématique du probléme d’optimisation, en dé-
finissant précisément le critére de cotit et les contraintes dynamiques associées.
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4 Formulation du probléme d’optimisation

4.1 Objectif

Nous cherchons maintenant a déterminer une fonction de controle ¢ — h(t) définie
sur [0,1], permettant de ramener le pendule a I’état d’équilibre (9,9) = (0,0) tout en
minimisant I’énergie nécessaire pour y parvenir.

L’énergie consommeée est modélisée par une fonctionnelle de coftit J :

vJ € C'([0,1],R) J(h):= /1 h(t)*dt.

Ce critére quadratique est standard en controle optimal car il pénalise les efforts ex-
cessifs et conduit & un probléme convexe bien posé.
Plutot que de traiter immeédiatement le probléme dans son cadre fonctionnel continu,
nous en étudions d’abord une version discrétisée, adaptée a une résolution numérique.
Cette premiére formulation prépare le passage a une approche plus abstraite, qui sera
développée en fin de rapport a travers une formulation variationnelle rigoureuse dans un
espace de Sobolev adapté.

4.2 Discrétisation du probléme

En reprenant le schéma d’Euler explicite, nous avons déja obtenu une discrétisation
de I’équation différentielle du pendule sous la forme :

Oni1 = O + At-0,,
9n+1 =0, + At- (—% sin(6,,) + hn) ,
ou hy :=h(t,).
Soit N € N*. On discrétise la fonctionnelle de cott par la N-iéme somme de Riemann

associée a la subdivision 0 = t) < t; < --- < ty = 1. La fonctionnelle de cotit devient
alors :

N-1
J(h)~ Y  At-hl
n=0

Cette approximation est justifiée par le fait que, pour h continue,
1

N-1
> O At-h(t)? —— [ h(t)dt
=0

N—+o0o  Jg

Nous cherchons donc a résoudre le probléme d’optimisation discret suivant :

N-1
min Z At - h?
n=0

(ho,...,hn—1)ERN

;

sous les contraintes :

Ve {0,...,N—1}, Opo1 =0, +At-0,, (1)
Ynel0,...,N—1}, 9n+1:9n+At-<—%Sin(0n)+hn),
L GO,QOGR On =0, éN:O
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Complexité du probléme non linéaire

Ce probléme d’optimisation est difficile & résoudre en raison de la non-linéarité in-
troduite par le terme sin(f,) dans les contraintes dynamiques. Cette non-linéarité rend
I’ensemble des trajectoires admissible non convexe, ce qui complique & la fois I'analyse
théorique (existence et unicité de la solution) et la résolution numérique (présence possible
de minima locaux, convergence non garantie des algorithmes classiques).

Afin de contourner ces difficultés, nous nous placons par la suite dans le régime des pe-
tites oscillations, c¢’est-a-dire lorsque I’angle reste suffisamment proche de zéro (|6, < 0,2
rad). Dans ce cas, 'approximation sin(6,,) = 0,, est valable, et les contraintes dynamiques

deviennent affines en ( ") . Cette simplification permet de reformuler le probléme comme

On,
une minimisation quadratique sous contraintes affines, bien mieux adapté a une résolution
numérique rigoureuse et efficace.

4.3 Linéarisation du probléme dans le cas des petites oscillations

Comme expliqué dans le dernier paragraphe, on se place dans le cas de petites oscil-
lations (|6,] < 0,2 rad) et on utilise sin(6,) ~ 6,,.
On considére RY muni de son produit scalaire canonique :

N
V(z,y) € RN xRY (z,9) := > zpyn = 2"y
n=1

ou z' désigne la transposée de x vu comme élément de M,, ;(R) et le produit utilisé est
le produit matriciel usuel. Le probléme devient :

( min At||h|)?
h:(h(),...,thl)eRN

vne{0,...,N—1}, O, =0, +At-0,

Ve {0,... N~ 1}, fpo1 =0, + At (—%enmn)

\GO,QOGR, 9]\]:0, (9]\]:0

Notons :

1 At 0 , 0
A= 9N € Mys(R), B:= (At)ER et Yne{0,...,N-1} Y, := (Qn

Le probléeme se réécrit :
( .

min At||h]?
h=(ho,....,hn_1)ERV

Vne{0,....,N—1}, Y, =AY, +h,B
Y, € R?

=)= 6)

Notons que A est inversible. En effet,

det<A):1+At2.%>o

)eRZ.
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Soit n € {0,..., N —1}.

En multipliant la relation Y, 1 = AY,, + h, B a gauche par A~"*Y_on obtient :
A~y = AT, + h, A"V B

En sommant cette égalité pour n allant de 0 & N — 1, on obtient par télescopage :

N-1

Ay + Y " h AT B = ANy (+)
n=0
0 .
Comme Yy = <O>’ on obtient :
N-1
Z hnA—(n—l-l)B _ _AO}/O
n=0

Il est plus commode de travailler avec les puissances de A qu’avec les puissances de A~
donc on multiplie par AV & gauche. Cela donne :

N-1
Z hnANf(nJrl)B _ _ANY*O
n=0

Posons :
M := (AN"'B AN72B ... B)eR>¥

La contrainte devient :

Mh = —-ANY,

Résoudre le probléme initial implique la résolution de ce probléme de minimisation :
min At||h]?
heRN
Mh = —ANY;,
Y, € R?

Ces problémes sont en fait équivalents.
En effet, si un vecteur h € RN vérifie Mh = —ANY], alors on peut reconstruire la
trajectoire compléte (Y;,)o<n<ny par récurrence en posant :

Y, € R?
vne{0,...,N—1}, Y, =AY, +h,B

En reprenant I’équation (j4)), une telle trajectoire vérifie :

N-1

Yy =AY, + ) mAN'FB
k=0

Yn = ANY, + Mh

Yy = AV, + (—AVY))

Yy =0

1t
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Ainsi, la trajectoire (Y},)o<n<n définie par récurrence a partir de Yy et du vecteur h respecte
bien toutes les contraintes du probléme initial.

( min NAt' R
h=(ho,....h5_1)ER .
(rov-niv)® min At |[h]|?
Vne{0,...,N -1} Y11 = AY, + h,B heRN
Y, € R? < Y Mh=-A"Y,
Yy € R?
W= (s) |
0
\
Dans le probléme de droite, les contraintes dynamiques et la condition finale ont été
condensées en une unique contrainte affine en h € R" de la forme Mh = —ANY,. On

passe ainsi d’un ensemble de N contraintes couplées et une condition finale & une seule
équation affine en h € R", ce qui simplifie considérablement 1’analyse du probléme. On
étudie donc ce nouveau probléme.

4.4 Caractéristiques du probléme simplifié
4.4.1 Etude de la fonction objectif
Soit h € RY.

Notons Iy la matrice identité de My (R).
On peut écrire :
At||h||* = At(hTh)
At||h||? = RTAtIxyh (car Iyh = h)

1
A7f||h||2 = §hT(2AtIN)h
Posons :

Q = 2Atly = (Qij)1<ij<n € My(R)

Alors @) est clairement symétrique et définie positive, car elle est diagonale et ses coeffi-
cients diagonaux sont strictement positifs.
On a alors :

1
At|[l* = A" Qh

La fonction objectif se réécrit :

RN 5 R
1
B SHTQh

Par définition, .J est une forme quadratique. Elle est polynomiale en h € RY donc admet
des dérivées partielles a tout ordre.
En tout point z € RY, on peut calculer son gradient V(x) € RY et sa hessienne

V2(z) € My (R). Apres calculs (cf [Annexe BJ), on trouve VJ(x) = Qx et V2J(z) = Q.

10
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1
La hessienne de la forme quadratique J(x) = §ZETQ:B est la matrice () elle-méme. Elle

est donc définie positive, ce qui montre que J est strictement convexe. De plus, J est
coercive. En effet,

lim J(h)= lim dt||h||*> = +oo (car dt > 0)
Al —+o0 IAl|—-+oo

4.4.2 Etude de I’ensemble des contrdles admissibles

On note C Pensemble des controles admissibles.

C:={heRY|Mh=—-A"Y,}

C={heR"|Mh+A"Y, =0}

C={heR"|Mh=0}+A"Y,

Notons V := {h € RN | Mh = 0}.

V est un sous-espace vectoriel de RY en tant que noyau de I’endomorphisme de RY

h — Mh. ANY] est un point de RY. Ainsi, C est un sous-espace affine de RY. Il est donc
non vide, fermé et convexe.

En effet, V est fermé dans RY en tant que sous-espace vectoriel d'un espace vectoriel de
dimension finie. Or C est I'image de V par la translation de RY X — X + ANY,. Clest
un homéomorphisme de RY (bijectif, continu, d’inverse X — X — ANY{ continu).

Donc C est fermé.

De plus, soit A € [0,1] et (z,y) € C?. On dispose de v, et v, dans V tels que :

xr=v, + ANy,
Y = Uy + ANyO
Alors,

(I=XNx+Axy=(1—-N(ve: + ANyO) + A(vy + ANyO)
(1 =Nz + My = (1—Nv, + v, + ANy,

Comme V est un sous-espace vectoriel de RY, il est stable par combinaison linéaire.
Donc

(1—=XNvy+ v, €V

On en déduit que (1 — Nz + Ay € C.

C est convexe.

Enfin, remarquons que la matrice M = (AN_lB AN=2p ... AB B) est de rang au
moins 2 et que par conséquent M M7 est inversible. Ce résultat sera indispensable dans
les sections suivantes.

Analyse du rang de M
Toutes les colonnes de M sont non nulles car les matrices A* k € {0,..., N — 1} sont

inversibles et que B # (8) Supposons que la sous-famille (B, AB) des colonnes de M

soit liée. Comme elles sont non-nulles, on dispose de A € R tel que :

11
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AB = \B

= (s D)la) )
= (3)-(a)

Q

= At’=0
C’est absudre.
Donc (B, AB) est libre.
Ainsi,
rang(M) = dim (Vect ((AN"'B AN2B ... A'B B)))
— rang(M) > dim (Vect(B, AB))
= rang(M) > 2

Inversibilité de MM7T
Par définition du produit matriciel, MMT € My (R).
Comme rang(M) = rang(MM?T) (voir pour une preuve) et qu'une matrice

carrée de taille 2 est de rang au plus 2, on dispose des inégalités :

2 <rang(M) et rang(MM") <2

Desquelles on déduit :

rang(MM7T) = 2

MMT7T est dés lors inversible.

4.4.3 Conclusion sur P’existence et 1’unicité de la solution du probléme

Comme J est strictement convexe et coercive sur RY, et que I’ensemble des controles
admissibles est non vide, convexe et fermé le probléme de minimisation admet une unique
solution A* sur cet ensemble. Le probléme étant bien posé nous pouvons a présent envi-
sager sa résolution numérique via une méthode adaptée : la méthode du gradient projeté
a pas fixe.

12
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5 Meéthode du gradient projeté pour la commande op-
timale discréte

Rappelons le probléme de minimisation dont I’existence de la solution est assurée par la
section précédente :

1
min —=h*Qh
heRN 2 @

Mh=b (ot b:=—ANY, € R?)

Y, € R?
Ce type de probléme peut étre résolu efficacement par une méthode appelée descente de
gradient projetée. Nous allons détailler cette méthode pas a pas.

5.1 Principe de la méthode du gradient

Prenons h € RV.

L’idée de base est simple : on veut descendre dans la direction ou la fonction J diminue
le plus rapidement. Cette direction est donnée par le gradient V.J(h).

On sait que :

VJ(h) = Qh = 2At - h.

Fixons le pas o € R7 de la descente et considérons h™ e C,n eN.
Une itération de descente sans contrainte, partant de h(™ serait alors :

At = p) — oV I (R™) = A — 20AL - ™.
Cela donne : .
D = (1 — 2aAt) - B,
Mais cette nouvelle valeur A"t ne satisfait pas nécessairement la contrainte Mh = b.
Il faut donc la corriger en la ramenant dans I’ensemble des vecteurs admissibles.

5.2 Projection sur ’ensemble admissible

Rappelons que 'ensemble admissible est défini par :
C={heRY | Mh=0b}.

L’idée est donc de projeter orthogonalement ("1 sur C, c’est-a-dire de chercher le
vecteur ("t € C le plus proche de R au sens de la distance induite par la norme
euclidienne.

La projection orthogonale I (z) d'un vecteur z € RY sur C' est donnée par la formule :

Me(2) =2 — MY (MMT)Y 1 (Mz —b)

Cette formule vient de la méthode des multiplicateurs de Lagrange et garantit que le
nouveau vecteur projeté satisfait exactement la contrainte Mh = b. Une démonstration

est proposée en [Annexe C|
R =Tl (B — aVJ (™))

13
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5.3 Algorithme du gradient projeté

Nous décrivons ici un algorithme pas & pas a appliquer numériquement :

1. Initialisation :
— Choisir un vecteur h®) € RY (par exemple le vecteur nul).

— Fixer un pas a > 0, typiquement petit (ex. a = 1072).
2. Itérations : pour n =0,1,2,..., jusqu’a convergence :

(a) Gradient : VJ(h™) = Qh™) = 2At - b

(b) Descente : A"t = p(") — 4 Q™

(c) Projection :

h(n—i—l) _ HC(iL(n—I—l)) _ ﬁ(n—&-l) _ MT(MMT)—l(MiL(n-H) . b)

3. Arrét : lorsque |h"T) — h™|| < £, on considére que la solution a convergé.

Remarques
— L’algorithme converge vers la solution unique du probléme si « est suffisamment

petit.
— La projection garantit que chaque itéré reste faisable.
— Cette méthode est simple, efficace, et parfaitement adaptée aux problémes quadra-

tiques avec contraintes linéaires.

Convergence de I’algorithme du gradient projeté plus détaillée

Nous voulons démontrer que la suite (h(™),cn générée par I'algorithme du gradient
projeté converge vers la solution unique du probléme d’optimisation :

1
min  —hTQh.
heERN, Mh=b 2

Cadre du probléme
— La fonction cott J(h) = %hTQh est de classe C!, strictement convexe, et coercive,

car Q = 2At -1 = 0.
— L’ensemble admissible C' = {h € RY | Mh = b} est un sous-espace affine de RY.

Dans ce cadre, le probléme posséde une unique solution optimale h*.

Structure de l’algorithme I’algorithme s’écrit comme une suite d’opérations de la

forme :
pntl) — p(n) _ th(n)
h(n+1) _ HC(iL(n—&-l))

Soit 1 la projection orthogonale sur C, alors ’algorithme devient :

R =Tle (I — aQ)h™).

14
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Pourquoi cette suite est contractante
— Le gradient VJ(h) = Qh implique que 'opérateur 7' := I — aQ) est linéaire et
symétrique. Si @ > 0, alors les valeurs propres de T sont 1 —2aAt € (0,1) si « est
bien choisi.
— En norme euclidienne, on a donc :

IT(x) = Tl = I(I —a@Q)(z —y)ll < sllz -yl avecr <1.

Donc T est contractant.
— De plus, la projection orthogonale Il est 1-Lipschitzienne, c’est-a-dire :

e (z) = Te@)ll < llz —yl Yo,y € RY.

Cette propriété est un résultat général des projections orthogonales sur des sous-
espaces convexes fermés.

En composant les deux, on obtient que l'opérateur total F'(h) = e ((I — aQ)h) est
contractant si a est suffisamment petit.

Par le théoréme du point fixe de Banach, une telle application contractante admet un
unique point fixe h* et la suite (™ — h* converge linéairement.

Critére d’arrét et justification L’algorithme est arrété lorsque :
A+ — || < e,

Cela signifie que la suite a été suffisamment stabilisée, i.e. que deux projections consécu-
tives sont trés proches. Comme A(™ — h* linéairement, la différence entre itérées succes-
sives diminue exponentiellement. Un tel critére permet donc de détecter efficacement que
I’on est arbitrairement proche du minimum exact.

Conclusion Sous le choix d'un pas a € (O ), la suite (h(™) converge linéairement

1
el
vers I'unique solution A* du probléme. Cela démontre la validité théorique de 1'algorithme
et justifie rigoureusement le critére d’arrét utilisé en pratique.

hz/'\ courbes de niveau deJ

%-espace affine

mrojection orthogonale
r le sous-espace affine’ direction opposég

hn+1

ent

lustration géométrique de l'algorithme du gradient projeté : descente dans la direction —V.J(h)
suivie d’une projection orthogonale sur I’ensemble admissible C' = {h | M h = b}.
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La figure [3| résume visuellement le fonctionnement de l'algorithme du gradient projeté.
Depuis un point initial 2™, on descend selon le gradient —V.J (h(”)), ce qui améne un
point RV hors de la contrainte Mh = b. On applique ensuite une projection orthogonale
sur I’ensemble admissible C' pour obtenir un point réalisable A"+ La répétition de ce
processus contractant permet de converger vers la solution optimale h*. Ce schéma permet
de mieux comprendre la mécanique géométrique sous-jacente au processus.

5.4 Reésolution numérique du probléme d’optimisation

Nous implémentons la méthode du gradient projeté sur Python pour résoudre le probléme
d’optimisation quadratique suivant :

1

in —hTOh
min ShQ
Mh=10

Y, € R?

Nous choisissons les paramétres numériques suivants :
— durée de la simulation : T = 1.0 s,
— taille du vecteur : N = 2000,
— Conditions initiales : 6, = 0.8, 6 = 0,
— Tolérance de convergence : ¢ = 107°.
Voici quelques résultats :

Evolution conjointe de 6(t) et h(t)

0.0 0.2 0.4 0.6 0.8 1.0
Temps (s)

Commande optimale h(t), angle (t) obtenus par gradient projeté

Temps (s) h(t) o(t) o(t)

0.0000  0.003777 0.800000 0.000000
0.0005 0.011621 0.800000 -0.003517
0.0010  0.019464 0.799998 -0.007030
0.0015 0.027308 0.799995 -0.010538
0.0020  0.035151 0.799989 -0.014043

Valeurs discrétes des premiéres itérations de h(t), 6(t) et 6(t)
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Conclusion

On observe que le vecteur h € C' déterminé par la méthode du gradient projeté a pas
fixe rameéne le pendule en temps fini & sa position d’équilibre stable (6,6) = (0,0).
Cette simulation valide le fonctionnement de 1’algorithme. Dans la suite, on s’intéresse
au probléme linéarisé mais non discrétisé que 1’on traite dans un espace de Hilbert.

6 Formulation variationnelle rigoureuse

On considére le probléme d’optimisation suivant :

min J(0) = /01 (@(t) + w2@(t))2 dt,

©cH

avec
H = H;(0,1)n H*(0,1),

qui est un espace de Hilbert. Afin de bien comprendre le cadre fonctionnel, nous rappelons
ici les définitions des espaces utilisés.

Définitions des espaces

— L’espace H'(0,1) est constitué des fonctions u € L?(0,1) dont la dérivée faible v’
existe et appartient aussi a L*(0,1).

— L’espace H}(0,1) est le sous-espace de H'(0,1) formé des fonctions qui s’annulent
aux bords : u(0) = u(1) = 0. On l'identifie comme I"adhérence de C'°(0, 1) dans la
norme H'.

— L’espace H?(0,1) est Pensemble des fonctions u € L?*(0,1) dont les dérivées faibles
u' et v appartiennent a L?(0,1).

L’intersection H = H}(0,1) N H?(0,1) regroupe donc les fonctions de classe H? qui

s’annulent en 0 et 1 au sens des traces. C’est un espace de Hilbert, muni de la norme
suivante :

117 = 61l + 1]l

Réduction par décalage admissible
Soit © € H2(0,1) telle que :
0(0) =0, O(0)=86, ©@1)=0, ©O(1)=0.
On pose alors ¢p = © — O, ce qui implique que ¢ € H.
Le probléeme d’optimisation devient :

. 2

2}2151 T(¢+6)= /0 (qb(t) + w?p(t) + (f)(t) + wQ(:)(t)> dt.

Explication

Pourquoi utiliser Hj(0,1) N H?(0,1)? L’espace H?(0,1) est nécessaire car on tra-
vaille avec une fonctionnelle qui fait intervenir ©, donc une dérivée d’ordre 2. L’espace
HJ(0,1) garantit que les fonctions et leurs dérivées premiéres s’annulent aux extrémités.
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L’intersection des deux permet donc & la fois d’avoir une régularité suffisante (pour que
¢ € L?) et des conditions aux bords nulles, ce qui est essentiel pour utiliser le théoréme
de Lax—Milgram.

Pourquoi faire un décalage? Le probléme initial est posé sur un espace affine U,
car les conditions aux bords imposent des valeurs non nulles. Pour pouvoir appliquer les
théoremes variationnels standards (qul nécessitent un espace vectoriel), on effectue un
changement de variable ¢ = © — @ ot © est une fonction construite pour satisfaire les
conditions aux bords. Le nouveau probléme porte alors sur ¢ € H, espace vectoriel de
Hilbert adapté au cadre variationnel.

6.1 Formulation variationnelle

On définit la forme bilinéaire :

(o) = [ (30 +260)) (900 + w2000

et le second membre :

On cherche alors & résoudre :
Trouver ¢ € H tel que a(¢p,v) = f(¢), Vi € H.

Le passage a la formulation variationnelle permet d’associer au probléme un systéme
d’équations (via le principe de minimisation), équivalent & une équation différentielle avec
conditions aux bords. Cette équation est obtenue en cherchant ¢ € H tel que :

a(¢,v) = f(¥) V€ H,

ol af(-, -) est une forme bilinéaire continue et coercive, et f est une forme linéaire continue.
Le cadre de Lax—Milgram garantit alors existence et unicité.

Pourquoi la solution est optimale? La fonctionnelle J est convexe (méme stricte-
ment convexe) car c’est une intégrale d'un carré. L’ensemble H est un espace de Hilbert,
donc convexe et fermé. Dans ce cadre, toute solution du probléme variationnel correspond
au minimum global de 7.

En résumé Ce changement de cadre est une étape classique en calcul des variations : on
transforme un probléme avec contraintes (bord) en un probléme sans contrainte dans un
espace de Hilbert, en imposant ces contraintes dans le choix de 0. Cela permet d’utiliser
toute la puissance des outils fonctionnels pour prouver I'existence, I'unicité, et méme la
stabilité de la solution.
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6.2 Enoncé et démonstration du théoréme de Lax—Milgram

Enoncé Soit H un espace de Hilbert réel. Soit a : H x H — R une forme bilinéaire
vérifiant :

— (continuité) 3C' > 0 tel que |a(u,v)| < C|lu||||v]| Yu,v € H,

— (coercivité) Ja > 0 tel que a(v,v) > aljv||*> Vv e H.
Alors, pour tout f € H’, il existe un unique u € H tel que :

a(u,v) = f(v) Yv € H.

Démonstration 1. Construction de 'opérateur associé.
Pour tout w € H, l'application v — a(u,v) est une forme linéaire continue. Par le
théoréme de Riesz, il existe un unique élément Au € H tel que :

a(u,v) = (Au,v), Vv e H.

On définit ainsi un opérateur A : H — H. Il est linéaire par construction.
2. Injectivité de A.
D’apres la coercivité de a, on a :

allul® < a(u,v) = (Au,u) < [[Aull - flull - = allul] < [|Aul|.

Donc ||Au|| =0 = u = 0, ce qui montre que A est injectif.
3. Fermeture de 'image de A.
Soit (w,) C Im(A) telle que w,, — w dans H. Il existe u,, € H tel que Au,, = w,. On
a:
| Aty — Ay || > al|tp, — up|| = (uy) est de Cauchy = u, — u € H.

Par continuité de A, on a Au, — Au, donc w = Au, et Im(A) est fermé.
4. Surjectivité.
Soit v € Tm(A)*. Alors :
Vue H, (v,Au) =0= a(u,v)=0.
En particulier, a(v,v) = 0 = ||v|| = 0 par coercivité, donc v = 0. Ainsi :

Im(A)* = {0} = Im(A) = H = Im(A) = H.

5. Existence et unicité.
Par le théoréme de Riesz, ¢(v) = (o, v) pour un certain xy € H. Le probléme devient :

Yoe H, (Au—xp,v) =0= Au = x.
Comme A est bijectif, il existe un unique v € H tel que Au = xy. Donc :

a(u,v) =L(v), Yve H.

Conclusion L’application A est un isomorphisme de H sur son dual, et la solution
u € H est unique. Le probléme admet donc une unique solution faible.
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6.3 Application de Lax—Milgram

— H est un espace de Hilbert.
— a est bilinéaire, symétrique, continue :

la(¢, )] < Cligllulllla,

pour une certaine constante C' > 0.
— a est coercive :

a(¢,¢) > allo|l,

pour un certain o > 0.
— f € H' est une forme linéaire continue.
Par le théoréme de Lax—Milgram, il existe donc une unique solution ¢ € H vérifiant :

a(¢,v) = f(¥), Vi€ H.

Démonstration rigoureuse des hypothéses du théoréme de Lax—Milgram
Nous détaillons ici rigoureusement la vérification des conditions du théoréme de Lax—Milgram

appliqué a notre probléme variationnel.

1. Continuité de la forme bilinéaire a(-,-) On considére la forme bilinéaire définie
par :

o) = [ (60000 +woule) + S)in) d

Nous utilisons 'inégalité de Cauchy—Schwarz dans L?(0, 1) pour chaque terme :

1
AWSWMW%

1
2 < w? 2 2
wéw_wwmwh

1 oo se .o ..
AWSWMWH

En additionnant, on obtient :

(¢, )] < lDll2llllze + 1@l + 0]z ]] 2.
Or, la norme dans H := H}(0,1) N H?(0,1) est donnée par :
o117 := lélz: + I9lZ2 + [1SlIZ=-

Dés lors, on majore chaque terme par ||¢| g||¢| a, et il existe une constante C' > 0
telle que :

la(, ¥)| < Cligllullvla.

Ce qui prouve la continuité de a sur H x H.
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2. Coercivité de a(-,-) On calcule a(¢, ¢) directement :

1
o(0.6) = [ (18P + o) + GO) .
0
Tous les termes sont positifs et 'intégrale donne exactement la norme ||¢||% :

a(¢,6) = [19lI72 + WP llo]172 + Io]172 = Il

Par conséquent, la coercivité est satisfaite avec o = 1, ce qui est une coercivité stricte :
a(¢,¢) = [0]% = alloly

3. Continuité de la forme linéaire f La forme linéaire est définie par :

f() = —/01 <@(t) +w2é(t)> (@Z)(t) +w2¢(t)> dt.

On note ¢(t) := (:j(t) + w2O(t) € L2(0,1) car © € H%(0,1) = Ocl?ect® el
Alors : )
[F)] < Ngllze - 1 + w0l 2.

On majore :

I+l < Ndlze + wllze < Cllar

Ainsi, il existe une constante Cy > 0 telle que :

f ()] < CrllY]la

Donc f est une forme linéaire continue sur H.

Conclusion Toutes les hypothéses du théoréme de Lax—Milgram sont rigoureusement
vérifiées :

— a est bilinéaire, symétrique, continue et coercive sur H,

— f est linéaire continue sur H.

Le théoréme garantit alors I'existence et I'unicité d’une solution ¢ € H au probléme
variationnel :

a(g, ) = f(¥), Ve H.
6.3.1 Conclusion : unicité de la solution optimale

On reconstruit la solution du probléme initial :
©=¢+0,
et le controle optimal associé est donné par :

h(t) = O(t) + w?O(t).

Puisque © € H?(0,1), on a bien h € L?(0,1).
La coercivité de a entraine la stricte convexité de la fonctionnelle 7, ce qui assure
I'unicité de la solution optimale dans I’espace H.
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7 Caractérisation optimale et suite naturelle aprés Lax—
Milgram

Dans la section précédente, nous avons démontré 1’existence et 1'unicité d’une solution
© € H?*(0,1), minimisant la fonctionnelle

sous les conditions aux bords imposées.

Cependant, le théoréme de Lax—Milgram, bien qu’essentiel, ne fournit qu'une évidence
d’existence et d’unicité — il ne dit rien de la forme de la solution. La question naturelle
est alors : peut-on aller plus loin 7 Peut-on caractériser explicitement, & 1’aide de I’analyse
fonctionnelle et des outils variationnels, la nature profonde de cette solution ? La réponse
est oui. Et cette section s’y consacre .

1. Réduction en un probléme variationnel canonique

On cherche ¢ € H := H}(0,1) N H*(0,1) tel que :
a(é,¥) = f(b), Vo€ H,
ou :
1 . .
alé, ) = / 6+ P8 + ) dr,
1 ~ ~ .
) = - / (6 +w8) (i + W) dt.

2. Dérivation de I’équation d’Euler—Lagrange

On pose © = ¢ + O et considére une variation 1 € H. On calcule la différentielle de
la fonctionnelle en direction v :

STO)] = L-T(O +ev)

= /I(é +w?O) (¢ + w?y) dt.
e=0 0

On veut maintenant exprimer cette condition de stationnarité sous forme d’une équa-
tion différentielle.

Intégration par parties :

On applique deux fois 'intégration par parties : - fol @w dt = fol OWy dt, - fol @1[) dt =
— [, 6ddt = [y ©fdt = — [} Oy, etc. . ‘

En combinant les identités et en annulant les bords (car ¢(0) = ¥(1) = ¥(0) = (1) =
0), on obtient :

1
/ [@<4> — 2026 + of*@} G(t)dt =0, Vi e H.
0
Par le théoreme fondamental du calcul variationnel, cela implique :

OW(t) — 2w?O(t) + w'O(t) =0 dans (0,1).
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3. Unicité fonctionnelle et différentielle

L’équation obtenue est une EDO linéaire d’ordre 4, avec 4 conditions aux bords (2 en
0, 2 en 1). Il s’agit donc d’un probléme de Cauchy—Dirichlet bien posé, et il admet une
unique solution réguliére dans H?(0,1).

Or, cette solution est aussi celle obtenue via Lax-Milgram. Cela confirme que le mi-
nimum de la fonctionnelle est atteint pour la solution ©® € H qui satisfait 'EDO d’ordre
4 dérivée de fagon variationnelle.

Conclusion

Nous avons établi que le minimiseur unique du probléme d’optimisation satisfait une
équation d’FEuler-Lagrange forte d’ordre 4. Ce résultat relie rigoureusement 'analyse va-
riationnelle abstraite au cadre classique de I'analyse différentielle, et permet d’approcher
la solution via des méthodes analytiques ou numériques adaptées a des équations diffé-
rentielles a conditions aux bords.

4. Dérivation de I’équation d’Euler—Lagrange

En utilisant la méthode des variations, on a montré que toute solution ©® minimisant
J vérifie ’équation différentielle d’ordre 4 suivante :

OW(t) — 2w?O(t) + w?O(t) = 0, pour tout t € (0,1),
accompagnée des conditions aux bords :
0(0) =0, ©O(0)=06y, ©(1)=0 ©O(1)=0.

Cette EDO est linéaire a coefficients constants, et admet donc une solution explicite.

5. Résolution explicite de I’équation optimale

On cherche une solution de la forme exponentielle. L’équation caractéristique associée

est :
M =202\ + Wt = 0.

En posant z = A2, on obtient :
2 -2+ wt=0 = z=w? = \=Z4w (multiplicité 2).
La solution générale de ’'EDO est donc :

O(t) = (A+ Bt)e*' + (C + Dt)e ",

avec A, B,C, D € R des constantes a déterminer.
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6. Conditions aux bords et systéme linéaire

Nous appliquons les conditions aux bords pour identifier les constantes.

0(0)=A+C =6,

0(0) =wA+ B —wC+D =06,

O(1)=(A+B)e*+ (C+D)e =0

O(1) = (w(A+ B) + B)e* + (—w(C' + D) + D)e™ =0

Nous obtenons ainsi un systeéme linéaire de 4 équations & 4 inconnues :

A+C =06

wA + B —wC + D =6,

(A+B)e +(C+D)e ¥ =0

(w(A+ B)+ B)e* + (—w(C+ D)+ D)e ¥ =0

Ce systéme peut étre résolu analytiquement ou numériquement, et permet d’obtenir
une expression compléte et explicite de la solution optimale ©(t).

Conclusion

Nous avons établi que la solution optimale du probléme de commande est une fonc-
tion exponentielle affine, dont la forme est entiérement déterminée par les conditions aux
bords. Cette caractérisation analytique constitue un résultat fort, reliant la formulation
variationnelle & une solution concreéte, et confirme pleinement la validité de notre approche
fonctionnelle.

8 Approche Hamiltonienne : cohérence avec la solution
variationnelle

Dans cette section, nous montrons que la solution obtenue précédemment par méthode
variationnelle et analyse dans les espaces de Sobolev vérifie également les conditions du
principe du maximum de Pontryagin. Nous construisons le systéme état—adjoint et
vérifions que la solution explicite obtenue satisfait les conditions d’optimalité hamilto-
nienne.

1. Formulation du probléme de controéle optimal

On considére le systéme dynamique linéaire suivant :

01(t) = 0,(t),
05(t) = h(t) — w61 (1),

avec les conditions initiales :
91(0) — @0, 92(0) — 60,

et les conditions terminales :

0,(1) =0, 6y(1) = 0.
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Le colit & minimiser est :

Il s’agit donc d'un probléme de controle linéaire-quadratique.

2. Hamiltonien et principe du maximum de Pontryagin

On définit le vecteur d’état :
_ (01(2) _
o= (g0) ) = no)

pi(?)

pa(t)
()

1 1
H(z,u,p) = p" (Az + Bu) — §u2 = P16 + pa(h — w?6;) — §h2.

le vecteur adjoint p(t) = ( >, et les matrices :

Le Hamiltonien est :

La condition de maximisation impose :

oOH

Oh =p2 —h =0= h(t) = pa(t).

3. Systéme état—adjoint complet

On obtient le systéme couplé suivant :

91()292()

O5(t) = pa(t) — w?Or(t),
p1()—wP2()
Pa(t) = —pi(t).

Ce systeme est linéaire d’ordre 1 mais de dimension 4. Il peut étre vu comme une
équation d’ordre 4 en 6y, car :

él = 92 =p2 — C029.1 = —P1— W2927

‘9”1 = —p1 — WQél = —w2p2 — w251,
9§4) = —w’py — w? 91 = w’p; — Wz(_WQZ?z - wzél)_

En injectant, on retrouve finalement I'EDO :
0 — 20,26, + w6, = 0.

Conclusion : la trajectoire optimale 6;(t) vérifie la méme équation d’ordre 4 que
celle obtenue via la formulation variationnelle. Ainsi, la solution optimale est la méme,
que 'on adopte une approche analytique (Pontryagin) ou fonctionnelle (Lax—Milgram -+
Euler-Lagrange).

Cette cohérence des deux approches renforce la rigueur de la solution et permet une
lecture théorique a double entrée : soit via les espaces de Sobolev, soit via la mécanique
classique du controle optimal.
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9 Analyse fonctionnelle avancée : compacité, spectre et
stabilité

Dans les sections précédentes, nous avons caractérisé rigoureusement la solution du
probléme d’optimisation par deux approches : la méthode variationnelle (via Lax-Milgram
et Euler-Lagrange) et le principe de Pontryagin. Ces deux approches conduisent a une
équation différentielle linéaire d’ordre 4, dont la solution est explicitable.

Nous proposons ici une extension fonctionnelle plus abstraite, visant a :

— poser le probléme dans un cadre opérateur plus général,

— justifier la compacité et la structure spectrale du probléme,

— et préparer le terrain pour une analyse numérique ou variationnelle (type Galerkin).

1. Reformulation par opérateur linéaire
On introduit 'opérateur linéaire :
A:H— L*0,1), A(©):=06+u°0,
ou H = H}(0,1) N H?(0,1).
La fonctionnelle d’énergie s’exprime alors :

J(©) = ||406]|7, = (40, AO) -.

L’objectif est donc de minimiser la norme de A© sur un espace de Hilbert H.

2. Propriétés de compacité et structure spectrale
Nous savons que l'injection naturelle :
H?(0,1) N H(0,1) < L*(0,1)

est compacte (théoréeme de Rellich-Kondrachov).
Conséquence : 'opérateur A est linéaire et continu de H vers L?, donc 'opérateur
composé

T:=A"A:H — H,

est un opérateur compact, symétrique, positif défini sur H.
Il vérifie donc les propriétés suivantes :
— T est auto-adjoint : (T'¢p, V) gy = (¢, TV)y,
— T est compact : toute suite bornée admet une sous-suite fortement convergente,
— le spectre de T est réel, discret, et tend vers 0.

3. Probléme spectral associé et base hilbertienne
Le probléme spectral associé consiste a résoudre :
A'Ap = Ao, ¢e H.
Cela revient a chercher les fonctions propres de 7', qui forment une base hilbertienne
orthonormée de H. Toute fonction © € H peut alors s’écrire sous forme de série :
o0
e = Z Qn¢n, avec ¢, solution de T'¢,, = \,0,.

n=1
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Avantage : cette base permet d’envisager des méthodes variationnelles approchées
par projection (Galerkin) ou de décomposer la solution dans un cadre spectral rigoureux.

4. Remarque finale

Nous n’approfondissons pas cette piste dans le cadre de ce projet, mais elle constitue
une voie théorique naturelle a explorer. L’étude spectrale de 'opérateur T' = A* A offre
des perspectives solides en matiére de stabilité, de décomposition fonctionnelle et d’ap-
proximations numériques via des méthodes comme Galerkin ou les bases propres. Cela
pourrait faire I’objet d’un prolongement rigoureux du travail présenté ici.

Conclusion générale

Ce projet a permis d’étudier un probléme de commande optimale pour un systéme
linéaire de type pendule, dans un cadre a la fois numérique, variationnel et analytique.
Nous avons formulé le probléme dans un espace de Sobolev adapté, démontré 'existence
et 'unicité d’une solution par le théoréme de Lax—Milgram, dérivé 1'équation d’Euler—
Lagrange associée, et trouvé une solution explicite a I’aide d’outils d’analyse.

Nous avons ensuite confirmé 'optimalité par une deuxiéme approche via le principe
du maximum de Pontryagin, et enfin ouvert une piste vers une analyse spectrale abstraite
du probléme en introduisant la notion d’opérateur compact autoadjoint.

Ce parcours illustre 1'unité profonde entre analyse fonctionnelle, controle optimal,
et méthodes de résolution concretes — et montre que 1'étude rigoureuse d’un probléme
appliqué peut naturellement conduire a des questions de recherche théoriques riches.
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A Etude complémentaire des fonctions de contréle
Cas 3 : h(t) = 2sin(27t) (controle périodique lent)
Un forcage régulier peut provoquer une résonance si la fréquence est proche de celle du

pendule.

Evolution de 6(t) avec h(t) = 2sin(2mt)

0.75 h(t) = 2sin(2mt) — 6(t)
0.50
0.25

0.00 A

B(t) (rad)

—0.25 1

—0.50 4

—0.75 4

Temps (s)
Controle sinusoidal lent h(t) = 2sin(2mt)

Cas 4 : h(t) =5t(1 —t/T) (controle en cloche)
Cette impulsion transitoire simule une poussée progressive, puis décroissante, centrée au-
tour de 77/2.

Evolution de 6(t) avec h(t) = 5t(1 — t/T)

3501 — gt
h(t) = 5t{1 — t/T)
300 -
250 -
5 2001
s
£ 150 1
100 -
50
0 -
0 2 2 6 8 10

Temps (s)

Controle en cloche h(t) = 5t(1 —t/T)
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Cas 5 : h(t) =30 si 2.5 <t < 2.7 (choc ponctuel) Un choc bref et intense produit
une perturbation nette du mouvement.

Evolution de 6(t) avec h(t)=30si2.5<t<2.7

h(t)=30si2.5<t<2.7
1.0
0.5 4
S
s
= 004
3
_05 4
_10_
— Bit)
0 2 2 6 8 10

Temps (s)
Impulsion localisée : h(t) =30 si 2.5 <t < 2.7

Cas 6 : h(t) = —5sin(5t) (forgage rapide)
Une excitation rapide qui provoque des oscillations complexes, voire chaotiques.

Evolution de 6(t) avec h(t) = —5sin(5t)

h(t) = —5sin(5t)

1.0+

0.5 A

0.0

a(t) (rad)

—0.5 1

—=1.0 4

Temps (s)

Forgage rapide h(t) = —5sin(5t)
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B Gradient et hessienne d’une forme quadratique

RY - R
On considére la forme quadratique J : 1 et on démontre que
VJ(z) = Qz et V2J(z) = Q.
T
x
Soit = = _2 € RV,
IN

Explicitons J(x),

J(x) = %xTQa: = %Z inmej

i=1 j=1

Soit k € [[1, N].
On calcule la dérivée partielle par rapport a x.
Par linéarité de la dérivation :

(i)
a—MZ‘ZZQw

i=1 j=1

Par dérivation d’un produit et en utilisant le symbole de Kronecker ;. qui vaut 1 si i=k
et 0 sinon,

al'k ZZQZ] ik j +6 kxz>

lel

On sépare en deux sommes doubles :

(‘3J
8fL’k ZZQZ] zkx]+ ZZQz] kT

lel lel

En simplifiant :
8xk ZQk]:E] + = ZQ@ kL

Comme (@) est symétrique, pour tout (k:,]) € {l,...,N}* Qr; = Qjx. On a donc deux
fois la méme somme et on obtient :

8mk ZQk]x]

On en déduit le gradient de J au point x :
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Soit (k,¢) € [1, N]>.
On calcule la dérivée seconde :

0*J

J=1

Ainsi, la hessienne est :

N
ﬂ(x) Z Q1,5T;
8_362(1.) _ ]2231 Q2,j;
o7 »
8xN ({E) Zl QNJI]
iz
VJ(z) = Qux

4 - - ox;
0x1.0xy (z) = 0z (Z Qf,ja:j> = <; Q&ja_xjg) — Qur = Qr

02

V() :=( ) — (Quiicnsen = Q
(%kaxg 1<k A<N kJ1skESN

V2J(r) =Q
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C Projeté orthogonal sur le sous-espace affine

On considére un vecteur z := (21,...,2,)7 € RY et le sous-espace affine
C={heRY|Mh=0}+ ANY;. On démontre que le projeté orthogonal de z sur C' est
donné par h* := 2z — MY (MMT)"Y(Mz —b).

Démonstration :
Projeter z orthogonalement sur C, revient a résoudre le probleme :

min ||h — z||
heRN
Mh =10

Ce probleme est équivalent & :

min ||k — z|?
heRN
Mh =10

En effet, la fonction ¢ — ¢ est strictement croissante sur [0, +00), donc le minimisant est
inchangé. Cette reformulation est avantageuse car la fonction h +— ||h — z||* est différen-
tiable, convexe et coercive sur RY, ce qui facilite 'analyse.

L’ensemble admissible C' est non vide, fermé et convexe et la fonction objectif est
strictement convexe. Par conséquent, le probléme admet une solution unique.

Pour résoudre ce probléme, on utilise la méthode des multiplicateurs de Lagrange.
RY x R? est identifié & RV*? via la concaténation de vecteur qui est un isomorphisme. Le
lagrangien associé L est donné par :

V(h,A) € RY x R?  L(h,A) := ||h — z||* + X' (Mh —b),
Soit (hy,...,hy) € RY (A, A2) € R? et (k1) € {1,..., N} x {1,2}.

Calculons les dérivées partielles de £ par rapport a ses différentes variables.
En explicitant les termes définissant L :

AL P N N
T A) = E[Z(hi —2z)? + M) maihi = bi) + X () maihi — b))
k k=0 i=0 i=0
L
d—hk(h, )\) = Q(hk — Zk) + Alml’k + )\gmg’k
% g N N
d—/\l(h, )\) = d—/\l[Z(hz — Zi)2 + )\1(2 muhi — bz) + )\Q(Z mg,ihi — bz)]
i=0 i=0 i=0
L -
d_)\l(h’ A) = Z(ml,ihi —b;)
i=1
Do,
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-gTE(ha )‘>- [ 2(h1 — 21) + /\1m171 + /\2m271 T
g—h(h, A) 2(hy — 22) + Ao + Aama s
VL(hA) = : _ :
(.2 ;Tzv(f% A) 2(hy — 2n) + Mima n + Aama N
§§(h,k> E:%J(W“Jhi_'@)
L S=(hoN) ] L > iz (majhi — b;) ]
Ce qui se réécrit :
_[2(h—=2) + MT
VL(h,\) = [ Mh—b ]

Les conditions de régularité sont satisfaites, car les contraintes sont affines et M est de
rang 2, donc ses lignes sont linéairement indépendantes. La théorie des multiplicateurs de

Lagrange s’applique, et il suffit alors de résoudre le systéme des conditions stationnaires
de premier ordre :

2(h —2) + MTA =0

VL(hi,...,hp, A1, M) =0 —
(7 1 A2) {Mh:b

Ce systéme linéaire admet une solution unique grace a la coercivité de la fonctionnelle et
a la régularité des contraintes. La résolution de ce systéme fournit donc directement la

projection orthogonale recherchée, sans qu’il soit nécessaire d’examiner des conditions du
second ordre.

1
{2(h—z)+MT)\:0 h=z—-M"\
< 2
Mh="b Mh=1b

1 T
<~ 1 <~ 2
M(z—§MT/\) =b MM'\ =2(Mz —b)

La matrice M M7 étant inversible,

1
h=z—-M"\

— T4 —  |h =2~ MT(MMT)" (M2 — b)
A=2(MM")"H(Mz—b)
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D Sur I’égalité rang(MM?T) = rang(M)

Pour démontrer l'inversibilité de M M7 dans la sous-section K.4.2] nous avons utilisé le
résultat d’algébre linéaire non trivial rang(M) = rang(MM?) que 'on redémontre ci-
dessous.

Démonstration :
On commence par montrer 1'égalité ker(M M7) = ker(MT).
On a déja trivialement P'inclusion ker(M7) C ker(MMT).
Réciproquement, soit = € ker(M M7T). Alors :

MMTx=0 <— 2"MM'z=0
Or:

MM e = (MT2)" M Tz = [|[MT x|

donc

M 2] =0
— Mz =0 (séparation de la norme)
= 1z €ker(M")

Ce qui prouve ker(M7T) D ker(MM7T).
Donc

ker(MM™) = ker(M™)

On obtient par égalité des dimensions :

dim(ker(MM7T)) = dim(ker(MT))

D’apres le théoréme du rang,
Pour toute matrice A € M,, ,(R), on a : rang(A) = ¢ — dim(ker A).

D’ou les égalités successives :
rang(MM7) = m — dim(ker(MM™")) = m — dim(ker(M7)) = rang(M")

De rang(M7T) = rang(M), on déduit finalement

rang(MM7T) = rang(M)

Ce qui conclut la preuve. O
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