
Énoncé

Soit σ une permutation de N∗. Quelle est la nature de la série
∑

n∈N∗

σ(n)
n2 ?

Correction

Introduction

Quand on demande la nature d’une série, on souhaite savoir si la suite des sommes partielles
est convergente ou divergente. Ici, comme la série est à termes positifs, soit elle est convergente
soit elle diverge vers +∞.

Un cas particulier

Le premier réflexe naturel est de regarder la nature de la série si on prend σ = Id qui est
évidemment une bijection de N∗.

∑
n∈N∗

σ(n)
n2 =

∑
n∈N∗

n

n2 =
∑

n∈N∗

1
n

C’est la série harmonique, qui diverge.
On voit que la série

∑
n∈N∗

σ(n)
n2 peut diverger. Mais est-ce toujours le cas ?

Est-ce que la nature de la série dépend de la bijection utilisée ?
A cette étape de la résolution nous ne pouvons rien conclure.

L’importance de la bijection de N∗

Le fait qu’on ait une bijection de N∗ est une hypothèse intrigante. Si on la remplace par une
hypothèse plus familière comme une bijection de R∗

+ alors l’exercice devient trivial. En effet,
on ne peut rien conclure.
Prenons par exemple deux bijections classiques de R∗

+ comme φ1 : x 7→ x2 et φ2 : x 7→
√

x.
Ces bijections réciproques ont de plus les mêmes propriétés, elles sont strictement croissantes
et tendent toutes deux vers +∞ en +∞.
Fixons n ∈ N∗.
D’un côté, on a

φ1(n)
n2 = n2

n2 = 1

et la série
∑

n∈N∗

φ1(n)
n2 diverge grossièrement.



De l’autre côté,

φ2(n)
n2 =

√
n

n2 = 1
n

3
2

3
2 > 1 donc la série de Riemann

∑
n∈N∗

φ2(n)
n2 converge.

Après avoir exploré les hypothèses de l’énoncé, nous explorons quelques pistes de résolutions.

Idée :
Si on considère deux suites réelles positives u et v, une relation du type

∀n ∈ N
n∑

k=0
uk ≤

n∑
k=0

vk

permet de conclure que
si

∑
n∈N

vn converge alors
∑
n∈N

un converge.

si
∑
n∈N

un diverge alors
∑
n∈N

vn diverge.

Ce résultat cumulé à la présence du carré 1
n2 dans la somme peut faire espérer qu’une

application de l’inégalité de Cauchy-Schwarz permette de conclure.

Tentative de résolution grâce à l’inégalité de Cauchy-Schwarz

Soit n ∈ N∗.
σ ne s’annule pas car son image est N∗.
L’inégalité de Cauchy-Schwarz pour les sommes donne :

n∑
k=1

σ(k)
k2 ×

n∑
k=1

1
σ(k) ≥

( n∑
k=1

√
σ(k)

k
√

σ(k)

)2

≥
( n∑

k=1

1
k

)2

A partir de cette inégalité, on peut conclure que l’une au moins des séries
∑
k≥1

σ(k)
k2 ,

∑
k≥1

1
σ(k)

diverge.
En particulier, si

∑
k≥1

1
σ(k) converge,

∑
k≥1

σ(k)
k2 diverge nécessairement. (1)

Or, en prenant par exemple, σ = Id,
∑
k≥1

1
σ(k) diverge. Donc

∑
k≥1

1
σ(k) n’est pas convergente

en général et on ne peut pas conclure en utilisant (1) que
∑
k≥1

σ(k)
k2 diverge.

Un cas particulier qui se traite facilement est le cas σ monotone.



Elimination du cas où σ est monotone

Avant de traiter le cas où σ est quelconque, on peut se demander ce qu’il se passe lorsque σ
est monotone.
Nécessairement, σ est strictement monotone par injectivité.

Cas décroissant :
Remarquons que σ ne peut pas être décroissante. En effet, si elle était décroissante, elle serait
convergente car elle est minorée par 0. Or, une suite d’entiers convergente est stationnaire.
Cette propriété contredit l’injectivité et la surjectivité de σ.

Cas croissant :
Supposons σ strictement croissante. Une application strictement croissante à valeurs dans N∗

a la propriété :

∀n ∈ N∗ σ(n) ≥ n

Donc

∀n ∈ N∗ σ(n)
n2 ≥ 1

n

Par comparaison au terme général de la série harmonique,
∑

n∈N∗

σ(n)
n2 diverge.

Ce résultat obtenu dans le cas particulier où σ est monotone nous motive à prouver que∑
n∈N∗

σ(n)
n2 est toujours divergente.

En fait ici, on n’a rien prouvé de plus. La seule permutation strictement croissante de N∗ est
l’identité. En effet, si σ est strictement croissante, σ−1 l’est également et on a

∀n ∈ N∗ σ(n) ≥ n et σ−1(n) ≥ n

⇐⇒ ∀n ∈ N∗ σ(n) ≥ n et n ≤ σ(n)

⇐⇒ ∀n ∈ N∗ σ(n) = n

Mais dans le cas où σ est seulement injective, si de plus elle est croissante (donc strictement

croissante), on a quand même obtenu la divergence de
∑

n∈N∗

σ(n)
n2 .

Idée :
Le plus naturel ici pour montrer la divergence est de nier le critère de Cauchy pour les séries.
Cette notion hors programme est la clé pour résoudre beaucoup d’exercices d’analyse des
oraux de concours aux grandes écoles. Ce critère est particulièrement utile lorsqu’il s’agit de
montrer qu’une suite diverge et il est de plus très facile à démontrer dans ce sens.



Étape 1 : Utilisation du critère de Cauchy

Ce critère est très simple à comprendre. Il dit juste qu’une suite réelle (un)n∈N converge si et
seulement les termes de la suite sont aussi proches que l’on veut les un des autres, pourvu
qu’on regarde assez loin dans les indices. Formellement,

(un)n∈N converge ⇐⇒ ∀ε > 0 ∃Nε ∈ N | ∀p, q ∈ N p, q ≥ Nε ⇒ |up − uq| ≤ ε

Le sens direct de l’équivalence est facile à montrer à partir de la définition d’une suite
convergente. Il utilise l’inégalité triangulaire avec un « ajouté retranché » de la limite. C’est
ce sens qu’on utilise (sa contraposée) pour nier la convergence d’une suite réelle.
Le sens réciproque est plus difficile à montrer mais ça reste un exercice classique de MPSI
(en plusieurs questions). Dans les grandes lignes, on montre d’abord que l’assertion implique
que la suite est bornée, on applique alors le théorème de Bolzano-Weierstrass pour avoir une
valeur d’adhérence puis comme les termes sont très proches les uns des autres au voisinage de
+∞, et que certains termes sont très proches de la valeur d’adhérence au voisinage de +∞,
ils sont tous très proches de la valeur d’adhérence au voisinage de +∞ et on peut conclure
que la suite converge vers cette valeur d’adhérence.

Soit n ∈ N∗.
On définit la suite (Sn)n∈N∗ par Sn :=

n∑
k=1

σ(k)
k2 .

Soit p, q ∈ N∗ deux entiers tels que q > p.
On regarde |Sp − Sq|.

|Sq − Sp| =
q∑

k=p+1

σ(k)
k2

La quantité
q∑

k=p+1

σ(k)
k2 s’appelle une tranche de Cauchy.

Nos premières intuitions nous ont poussés à penser que (Sn)n∈N∗ divergeait. On cherche donc à
minorer |Sp − Sq| par une constante afin de nier le critère de Cauchy et conclure que (Sn)n∈N∗

ne converge pas.
Par décroissance de la fonction inverse,

q∑
k=p+1

σ(k)
k2 ≥

q∑
k=p+1

σ(k)
q2

≥ 1
q2

q∑
k=p+1

σ(k)

Idée :
Tout l’enjeu réside dans la minoration de 1

q2

q∑
k=p+1

σ(k). Une minoration pas assez fine ne

permettra pas de conclure.



Étape 2 : Minoration de la tranche de Cauchy

Une minoration pas assez précise

On peut facilement minorer
q∑

k=p+1
σ(k) grâce au minimum des éléments de la somme.

1
q2

q∑
k=p+1

σ(k) ≥ 1
q2

q∑
k=p+1

min
k∈{p+1,...,q}

{σ(k)}

≥ q − p

q2 min
k∈{p+1,...,q}

{σ(k)}

On peut prendre q = 2p pour voir,

1
(2p)2

2p∑
k=p+1

σ(k) ≥ 1
4p

min
k∈{p+1,...,2p}

{σ(k)}

Là on est bloqué. On ne peut pas bien minorer min
k∈{p+1,...,2p}

{σ(k)}. L’image réciproque de 1
pourrait être dans {σ(p), . . . , σ(2p)} et on aurait min

k∈{p+1,...,2p}
{σ(k)} = 1. Ce qui donnerait

1
(2p)2

2p∑
k=p+1

σ(k) ≥ 1
4p

qui est une minoration inintéressante car ce qui nous intéresse c’est de minorer la tranche
de Cauchy par une constante. Nous n’avons pas encore utilisé la bijectivité de σ et c’est
sûrement pour ça qu’on est bloqué. Nous ne pouvons pas utiliser cette hypothèse pour minorer

uniformément le min. On revient en arrière pour minorer d’une meilleure façon 1
q2

q∑
k=p+1

σ(k).

Une minoration fine de 1
q2

q∑
k=p+1

σ(k)

C’est sûrement ici que va intervenir la bijectivité de σ pour minorer la somme.

Comme σ est une bijection, on peut dire que tous les éléments de
q∑

k=p+1
σ(k) sont distincts.

Remarquons que cette propriété ne dépend que de l’injectivité de σ. On a donc une somme
de q − p entiers positifs distincts.

Idée
On peut minorer

q∑
k=p+1

σ(k) par la somme des q − p premiers entiers.

En effet, on démontre par une récurrence triviale la propriété P(n) = «
n∑

k=1
k est la plus petite

somme de n entiers strictement positifs distincts ». Cette propriété est vraie au rang 1 et si
elle est vraie au rang n, le plus petit entier distinct des n premiers entiers est n + 1, donc en
l’ajoutant à la somme, on obtient la somme de n + 1 entiers distincts minimale.



On a donc
q∑

k=p+1
σ(k) ≥

q−p∑
k=1

k (on pourra retenir ce résultat)

⇐⇒ 1
q2

q∑
k=p+1

σ(k) ≥ 1
q2

q−p∑
k=1

k

Or, on sait calculer la somme des q − p premiers entiers,
q−p∑
k=1

k = (q − p)(q − p + 1)
2

Ceci nous donne,
1
q2

q∑
k=p+1

σ(k) ≥ (q − p)(q − p + 1)
2q2

On a le droit de choisir q = 2p dans cette expression. Cela nous permet de minorer facilement
l’expression du membre de droite :

1
(2p)2

2p∑
k=p+1

σ(k) ≥ (p)(p + 1)
2(2p)2

≥ p + 1
8p

≥ p

8p

1
(2p)2

2p∑
k=p+1

σ(k) ≥ 1
8

On a obtenu le résultat que l’on voulait.
L’inégalité, donne par transitivité,

|S2p − Sp| ≥ 1
8 (2)

Étape 3 : La série ne vérifie pas le critère de Cauchy

Conclure grâce aux suites de Cauchy
Comme (2p)p∈N et (p)p∈N sont deux suites d’indices tendant vers +∞ quand p → +∞ et que
S2p et Sp sont toujours distants de 1

8 , (Sn)n∈N∗ ne vérifie pas le critère de Cauchy donc elle

diverge. On peut conclure que
∑

n∈N∗

σ(n)
n2 diverge vers +∞.

Conclure sans les suites de Cauchy
On peut conclure en occultant complètement le raisonnement fait avec les suites de Cauchy
de cette façon :
Si (Sn)n∈N convergeait, vers l ∈ R, on aurait, par passage à la limite dans (2)



l − l ≥ 1
8 ⇐⇒ 0 ≥ 1

8 absurde.

Donc (Sn)n∈N diverge vers +∞ et
∑

n∈N∗

σ(n)
n2 est une série divergente.

Ainsi on peut réussir l’exercice en regardant S2n − Sn, en minorant la tranche et en concluant
sans les suites de Cauchy mais ce n’est pas le cadre naturel de l’exercice.

Remarque :
La démonstration n’utilise pas la surjectivité de σ. Le résultat est donc valable pour toute
injection de N∗. Le fait qu’une hypothèse superflue ait été rajoutée complexifie l’exercice car
on pourrait se retrouver à creuser une piste liée à la surjectivité qui serait de fait inutile.

Résumé de la preuve

1) Considérer la tranche de Cauchy
2p∑

k=p+1

σ(k)
k2 .

2) La minorer en utilisant la décroissance de x → 1
x

sur R+.

2p∑
k=p+1

σ(k)
k2 ≥ 1

(2p)2

2p∑
k=p+1

σ(k)

3) Utiliser l’injectivité de σ pour affirmer que

1
(2p)2

2p∑
k=p+1

σ(k) ≥ 1
(2p)2

p∑
k=1

k

4) Calculer le membre de droite et le minorer pour arriver à

2p∑
k=p+1

σ(k)
k2 ≥ 1

8

5) Conclure que la suite des sommes partielles n’est pas de Cauchy ou raisonner par l’absurde
en supposant qu’elle converge et obtenir l’absurdité 0 ≥ 1

8 par passage à la limite dans
l’inégalité 4).


