Enoncé

Soit E un R-espace vectoriel de dimension finie.
Quels sont les endomorphismes de E qui stabilisent les hyperplans de E 7

Correction

Introduction

Comme souvent, cet exercice tombé a un oral de polytechnique voie MP est considéré difficile
car il nécessite de connaitre des résultats hors programme pour avoir une intuition de comment
le résoudre. Voyons pas a pas comment on peut le résoudre.

Notons n := dim(E) € N.

Enoncons quelques rappels pour bien comprendre I'énoncé.
On dit qu'un endomorphisme u € L£(FE) stabilise un sous-espace vectoriel F' de E lorsque :

uwF)CF & VYreFu(x)e F

Si on suppose que F' est de dimension finie égale a p € N et si I'on se donne une base
(€1,...,€p) de F, alors u(F) C F est équivalent a la propriété (tres utile) :

Vie{l,...,p} u(e;) € F

En toute généralité, un hyperplan est le noyau d’une forme linéaire non nulle. Lorsque la
dimension de I'espace est finie, un hyperplan peut se définir comme un sous-espace vectoriel
de dimension n — 1.

Etant donné que I’énoncé ne suppose rien sur n, nous pouvons commencer par résoudre
I'exercice pour les cas triviaux n € {0, 1} avant de proposer une résolution générale pour des
valeurs plus grandes de n.

Etape 1 : Elimination des cas triviaux

Casn=0:
Sin =0, il n’existe pas de sous-espace vectoriel de dimension —1, donc pas d’hyperplan et la
question n’a pas de sens dans ce cas.

Casn=1:
Si n = 1, 'unique sous-espace vectoriel de dimension 0 est le sous-espace vectoriel {0}. Tous
les endomorphismes de E stabilisent 0 (u(0) € {0}).

On suppose maintenant n > 2.
Le probleme n’a plus de solution évidente.



La résolution de cet exercice tient a peu de choses pres a la connaissance du résultat ci-dessous.

Lemme : Un endomorphisme d’un R-espace vectoriel stabilise toutes les droites
vectorielles si et seulement si c’est une homothétie.

Ce lemme est un résultat du méme type que notre exercice. Seulement, il est appliqué a des
sous-espaces vectoriels plus petits, les droites vectorielles. Si on le connalt d’avance, cela peut
nous aider pour résoudre I’exercice car on peut potentiellement s’inspirer de la démonstration
ou s’appuyer dessus pour démontrer un résultat du méme type.

Notez que ce résultat est valable en dimension quelconque. On le redémontre dans le cadre de
notre exercice (la dimension finie).

Etape 2 : Démonstration du lemme

Sens réciproque

Le sens réciproque de I'équivalence est trivial. En effet, si on considere (z,\) € (E '\ {0}) X R,
une homothétie z — Az et une droite vectorielle Vect(x), alors Az € Vect(z) donc une
homothétie stabilise n’importe quelle droite vectorielle.

Sens direct

Soit u € L(FE) qui stabilise toutes les droites vectorielles.

Soit (ey,...,e,) une base de FE.

D’apres I'hypothese, pour tout ¢ € {1,...,n} u stabilise Vect(e;) donc il existe A; € R tel que
U((B,L) = )\iei

De plus, u stabilise Vect(e; + - -+ + e,) donc il existe A € R tel que

uler+--4e,)=Ner+---4e,) = et 4+ dey

distributivité

Par linéarité de u, on a aussi :
uler 4+ -+ e,) =uler) + - +ule,) = Aer + -+ - + Apey
On en déduit 1’égalité :
Aer+ 4 Aep = Aer + -+ Anen
Par liberté de la famille (eq,...,e,), on en déduit :
ViE{l,...,n} )\z:)\
Ainsi,
Vie{l,...,n} wu(e;) = Ae;

L’application linéaire u et I’homothétie x — Ax coincident sur une base de F donc elles
sont égales.

|1 est une homothétie. |




A présent, nous disposons des outils nécessaires pour entamer la résolution de I'exercice.
Comment utiliser ce lemme ?

Une classe de solutions particulieres

Premiérement, on peut avoir envie de vérifier si les homothéties ne seraient pas aussi une
classe de fonctions solutions de notre exercice.

Soit H := Vect(ey,...,e,_1) un hyperplan de F, alors

VAeR Vie{l,...,n—1} Xe; € Vect(e;) C Vect(ey,...,e,-1)

Donc les homothéties stabilisent tous les hyperplans de E et sont solutions de notre exercice.

La question naturelle que ’on se pose ensuite est de savoir g’il existe d’autres applications
linéaires qui stabilisent les hyperplans de E. Donnons quelques arguments en faveur d’une
réponse positive a cette question.

La stabilisation « du bas vers le haut »
Considérons pour p € {1,...,n — 1} la propriété
« Stabiliser tous les sous-espaces vectoriels de dimension p ».

Fixons p € {1,...,n — 2} et considérons u € L(E) qui vérifie la propriété ci-dessus. Alors on
montre que u stabilise tous les sous-espaces vectoriels de dimension p + 1.

En effet, soit F':= Vect(ey, ..., e,41) un sous-espace vectoriel de dimension p + 1.
Comme u stabilise tous les sous-espaces vectoriels de dimension p, il stabilise Vect(ey, ..., e,)
et Vect(ea, ..., ep41) qui sont de dimension p.

Vie{l,...p} wule;) € Vect(ey,...,e,) C Vect(ey,...,epr1)

et
Vie{2,...p+1} wu(e;) € Vect(ea,...,ep1) C Vect(er, ..., epp1)
Ainsi,
Vie{l,...,p+1} wu(e;) € Vect(e,...,ep11) = F

Donc u stabilise F'.
Ainsi, u stabilise tous les sous-espaces vectoriels de dimension p + 1.

« Stabiliser tous les sous-espaces vectoriels de dimension p. »

—> « Stabiliser tous les sous-espaces vectoriels de dimension p + 1. »

Par récurrence finie triviale,

« Stabiliser tous les sous-espaces vectoriels de dimension p. »

— « Stabiliser tous les sous-espaces vectoriels de dimension ¢, avec ¢ > p. »

Avec les implications que nous avons démontrées, viennent deux idées :



- Les droites vectorielles étant de dimension 1 et les hyperplans de dimension n—1, stabiliser
toutes les droites vectorielles implique de stabiliser tous les hyperplans. On redémontre ainsi
que les homothéties sont solutions du probleme initial.

- On pourrait penser qu’a chaque augmentation de la dimension, on trouve d’avantage
d’endomorphismes qui stabilisent tous les sous-espaces d’une méme dimension. Ainsi, on
pourrait penser que stabiliser tous les hyperplans est une propriété beaucoup moins exigeante
que stabiliser toutes les droites vectorielles de E et donc qu’il existerait des applications
linéaires qui ne sont pas des homothéties qui stabilisent tous les hyperplans. On va enfait
montrer que ce n’est pas le cas en dimension finie.

Idée :

Nous avons examiné la propriété de stabilité « du bas vers le haut ». Etant donné qu’on connait
les endomorphismes qui stabilisent toutes les droites vectorielles, on peut naturellement avoir
envie d’observer la propriété de stabilité « du haut vers le bas ».

C’est-a-dire, voir si pour un endomorphisme, stabiliser tous les hyperplans de E a un effet de
stabilité sur les sous-espaces vectoriels de plus petite dimension.

Pour passer d’hyperplans a des sous-espaces vectoriels de plus petite dimension, on peut penser
a les écrire comme des intersections d’hyperplans. Voyons comment cela se concrétise.

Etape 3 : Ecrire un droite vectorielle comme intersection d’hyperplans

Avant de prouver rigoureusement que tout sous-espace vectoriel strict de E peut s’écrire
comme une intersection finie d’hyperplans, illustrons cette propriété dans R3.

On considére une droite vectorielle quelconque (tracée en vert). On voit qu’en tragant deux
plans vectoriels distincts qui contiennent la droite, leur intersection est réduite a la droite.
Nous avons dessiné deux plans particuliers mais il y en a une infini qui peuvent convenir.
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FIGURE 1 — une droite vectorielle est une intersection d’hyperplans (dans R3)



Passons a une preuve rigoureuse.
Soit F' un sous-espace vectoriel de F de dimension p € N avec p < n — 1.
Considérons (e, ..., e,) une base de F' que I'on complete en une base de E (e, ..., e,).

Qu’elle est la famille d’hyperplans dont I’intersection donne exactement F 7

Il faut penser a deux choses.
- Un hyperplan est le noyau d’'une forme linéaire non nulle.

*

- Introduire les formes linéaires coordonnées (e}, ..., e’) qui sont définies ainsi :

r n

Ve:=> me; € B Vje{l,....,n} el(x)=u

i=1
Alors on a I’équivalence suivante,

r=Y z€F < Vje{p+1,...,n} ;=0
i=1

— Vie{p+1,....,n} €j(x)=0

— Vjie{p+1,...,n} xcKer(e)

n
—rze () Ker(e)
J=p+1

Donc

F = ﬁ Ker(e;-)

Jj=p+1

Les Ker(e}) sont évidemment des hyperplans et I est une intersection de n — p hyperplans.
En particulier, si F' est une droite vectorielle, c’est une intersection de n — 1 hyperplans de F.
A partir de ce résultat, nous allons pouvoir conclure quant aux endomorphismes qui stabilisent
tous les hyperplans.

Etape 4 : Les endomorphismes qui stabilisent les hyperplans stabilisent les
droites vectorielles

Soit u € L(E) qui stabilise tous les hyperplans de E. Soit D une droite vectorielle quelconque.

D’apres ce qu’on a vu a l’étape 3, on dispose de n — 1 hyperplans Hy, ..., H,_ 1 tels que
n—1
D= ﬂ H;

D’apres I'hypothese faite sur wu,
VzE{l,,n—l}szeHl U(.QTZ)GHZ

Donc

n—1 n—1
=1

i=1



n—1
Cette assertion signifie exactement que u stabilise ﬂ H;.
i=1
n—1

Comme D = ﬂ H;, u stabilise D. D étant une droite vectorielle quelconque,
i=1
u stabilise toutes les droites vectorielles.
D’apres le lemme, u est une homothétie.
Réciproquement, on a déja vu que les homothéties stabilisaient tous les hyperplans.
Nous pouvons conclure que
les endomorphismes qui stabilisent tous les hyperplans sont les homothéties.

Remarques :

- Pour démontrer en dimension quelconque que les endomorphismes qui stabilisent les droites
vectorielles sont les homothéties, il suffit de prendre (z,y) € E x E non nuls, et de montrer
que le A, et le A\, dont I'on dispose d’apres la propriété de stabilisation, tels que

wx) =Nz et u(y) = Ay

sont égaux. On traite séparément les cas (z,y) liée et (x,y) libre.

- A partir des résultats établis dans I’exercice, on peut facilement trouver les endomorphismes
qui stabilisent tous les sous-espaces vectoriels de dimension p € {1,...,n —1}. En
effet, d’apres les implications de 1’étape 2, de tels endomorphismes stabilisent tous les sous-
espaces vectoriels de dimension p + 1 et par récurrence finie, ils stabilisent tous les hyperplans
donc ce sont des homothéties.

- On peut aussi démontrer ce résultat en s’inspirant de la démonstration faite pour les hyper-
plans. Il suffit de remarquer que tout sous-espace vectoriel de dimension p — 1 est 'intersection

de deux sous-espaces vectoriels de dimension p. En effet, soit F' := Vect(ey,...,e,—1) un
sous-espace vectoriel de E de dimension p — 1. Complétons (ey,...,e,_1) en une base de £
(€1, €p_1,€p,€pt1,--.,€,). Alors, on montre que

F = Vect(ey,...,e,) N Vect(e, ..., €p_1,€p+1)

Donc si un endomorphisme stabilise tous les sous-espaces vectoriels de dimension p, il stabilise
tous les sous-espaces vectoriels de dimension p — 1. Puis, par récurrence descendante finie, un
tel endomorphisme stabilise les droites vectorielles et c¢’est finalement une homothétie.

Résumé de la preuve

1) Prendre une droite vectorielle quelconque Vect(e;). Compléter (e;) en une base (ey, ..., €,)
de E. Montrer que Vect(e;) est une intersection d’hyperplans grace aux formes linéaires
coordonnées :

Vect(e1) = ] Ker(e])
i=2



2) En déduire qu'un endomorphisme qui stabilise tous les hyperplans stabilise Vect(ey).
En effet,

Vie{2,...,n} u(Ker(e])) C Ker(el) = u(Vect(ey)) C Vect(eq)

car il stabilise chaque Ker(e}).

3) Conclure qu'un endomorphisme qui stabilise tous les hyperplans stabilise toutes les droites
vectorielles.

4) Redémontrer que les endomorphismes qui stabilisent toutes les droites vectorielles sont les
homothéties.

5) Vérifier que les homothéties stabilisent tous les hyperplans.

6) Conclure que les endomorphismes qui stabilisent tous les hyperplans sont exactement les
homothéties.



