
Énoncé

Soit (an)n∈N et (bn)n∈N deux suites d’éléments de R+ telles que

∀n ∈ N an+1 ≤ an + bn et
+∞∑
n=0

bn < +∞

Montrer que (an)n∈N converge.

Correction

L’énoncé est très simple et compréhensible de tous mais a été posé à un oral de concours très
exigeant donc doit certainement cacher quelques difficultés.

1ère preuve utilisant les valeurs d’adhérence

Le 1er réflexe naturel est d’exploiter l’inégalité entre les termes d’indices n et n + 1.

Etape 1 : Exploitation de l’inégalité de récurrence

Soit n ∈ N.
On dispose de cette inégalité :

an+1 ≤ an + bn

C’est une situation à laquelle on est habitué depuis le lycée permettant de remonter à une
inégalité uniquement en fonction de an et des bn.
De façon informelle, en décalant d’un rang,

an ≤ an−1 + bn−1

En injectant cette nouvelle inégalité dans celle initiale, on obtient par transitivité de (≤),

an+1 ≤ an + bn ≤ (an−1 + bn−1) + bn

Donc

an+1 ≤ an−1 + bn−1 + bn

En utilisant cette fois an−1 ≤ an−2 + bn−2, on a

an+1 ≤ an−2 + bn−2 + bn−1 + bn

On comprend qu’en itérant ce processus jusqu’à atteindre a0 à droite (premier terme de la
suite), on aura :



an+1 ≤ a0 + b0 + b1 + · · · + bn−1 + bn

Soit formellement,

an+1 ≤ a0 +
n∑

k=0
bk

Il y a deux façons de prouver cette inégalité obtenue par un raisonnement informel, de proche
en proche :

— la récurrence
— le télescopage

La récurrence est vraiment facile à établir mais elle est longue à bien rédiger. Je privilégie
lorsque c’est possible un raisonnement direct grâce à un télescopage. C’est souvent possible
lorsque l’on travaille avec des suites.
On a

an+1 − an ≤ bn

L’entier n étant fixé quelconque, cette relation est valable peu importe
l’entier k ∈ {0, . . . , n − 1},

∀ k ∈ {0, . . . , n − 1} ak+1 − ak ≤ bk

On somme cette relation pour k ∈ {0, . . . , n − 1},

n−1∑
k=0

(ak+1 − ak) ≤
n−1∑
k=0

bk

Ce qui donne par télescopage,

an − a0 ≤
n−1∑
k=0

bk ⇔ an ≤ a0 +
n−1∑
k=0

bk

Enfin comme les bn sont positifs, on dispose de l’inégalité

n−1∑
k=0

bk ≤
+∞∑
k=0

bk

Rappelons que
+∞∑
k=0

bk signifie lim
n→+∞

n∑
k=0

bk et qu’une condition suffisante (mais pas nécessaire)

pour avoir

∀n ∈ N
n−1∑
k=0

bk ≤
+∞∑
k=0

bk



est d’avoir bn ≥ 0 pour tout n ∈ N. En effet, la suite (
n−1∑
k=0

bk)n∈N est alors croissante et elle est

inférieure à sa limite
+∞∑
k=0

bk, qui existe toujours dans R+ ∪ {+∞}.

On injecte

n−1∑
k=0

bk ≤
+∞∑
k=0

bk

dans
an ≤ a0 +

n−1∑
k=0

bk

Ce qui fournit

an ≤ a0 +
+∞∑
k=0

bk < +∞

De plus, par hypothèse, (an)n∈N est positive,

∀n ∈ N 0 ≤ an ≤ a0 +
+∞∑
k=0

bk

(an)n∈N est bornée.

Analyse de ce qui a été fait

Nous avons utilisé toutes les hypothèses de l’énoncé mais nous ne sommes parvenus
qu’à montrer que (an)n∈N est bornée. Nous nous sommes tout de même rapprochés de la
solution car les suites convergentes sont bornées. Parmi les suites bornées, celles qui convergent
sont celles admettant une unique valeur d’adhérence (cours MPSI). D’après le théorème de
Bolzano-Weierstrass, (an)n∈N admet au moins une valeur d’adhérence. Si l’on montre que
cette valeur d’adhérence est unique, on aura la convergence de (an)n∈N. C’est peut-être une
piste qui permettra de conclure.

Idée :
Nous avons exploité l’inégalité de base pour borner supérieurement la différence entre an et
a0. Plutôt que de comparer uniquement an à a0 on peut introduire un paramètre m ∈ N et
comparer an à am et espérer obtenir plus d’information sur an étant donné que l’on s’offre un
degré de liberté supplémentaire avec m.



Etape 2 : Raffinement de l’inégalité

Soit (n, m) ∈ N2 tels que n < m.
On somme l’inégalité an+1 − an ≤ bn entre n et m − 1 :

m−1∑
k=n

(ak+1 − ak) ≤
m−1∑
k=n

bk

Ce qui donne, par télescopage :

am − an ≤
m−1∑
k=n

bk ⇔ am ≤ an +
m−1∑
k=n

bk

Ensuite, on remarque que l’on peut se débarasser du m dans la somme tout en gardant un bon

contrôle sur am . En effet, on utilise la majoration
m−1∑
k=n

bk ≤
+∞∑
k=n

bk (valable car les bn, n ∈ N

sont positifs), avec
+∞∑
k=n

bk −→
n→+∞

0 (reste d’une série convergente).

Donc

am ≤ an +
+∞∑
k=n

bk

Soit ε ∈ R∗
+.

Considérons un rang Nε ∈ N à partir duquel :

∀n ∈ N n ≥ Nε ⇒
+∞∑
k=n

bk ≤ ε

On a donc :

∀(n, m) ∈ N2 m > n ≥ Nε ⇒ am ≤ an + ε

On a beaucoup de liberté sur les choix de n et m dans cette inégalité. D’après ce qui a été
dit, on peut penser à faire intervenir des valeurs d’adhérence de la suite, pour voir si cela fait
avancer la résolution.

Rappel :
Les valeurs d’adhérence de (an)n∈N sont les réels K vérifiant l’une de ces deux propriétés
équivalentes :

1) Il existe φ : N → N strictement croissante telle que aφ(n) −→
n→+∞

K

2) ∀ε > 0 ∀N ∈ N ∃n ∈ N, n > N | |an − K| < ε

Clarifions le sens de la 2ème propriété. Cette assertion signifie qu’aussi loin que l’on soit dans
les indices de la suite (an)n∈N, on pourra trouver un terme an aussi proche que l’on veut de
K. Je privilégie cette approche ici car elle est plus économe en rédaction. En effet, utiliser
la définition avec l’extraction nécessite d’introduire la valeur d’adhérence, l’extraction, le
rang à partir duquel aφ(n) est ε-proche, se placer au-delà de ce rang. Tandis que la deuxième



approche nécessite uniquement d’introduire la valeur d’adhérence et le rang donné par la
définition.

Etape 3 : Introduction d’une valeur d’adhérence quelconque

Soit K une valeur d’adhérence de (an)n∈N. Appliquons la 2ème propriété avec ε et Nε. On
dispose de nε ∈ N, nε > Nε tel que :

K − ε ≤ anε ≤ K + ε

En utilisant cette majoration dans am ≤ an + ε, on trouve :

∀m > nε am ≤ (K + ε) + ε

⇔ ∀m > nε am ≤ K + 2ε

Cette inégalité est très intéressante. Tous les termes de la suite sont presque inférieurs à K
(qui est une valeur d’adhérence quelconque) à partir d’un certain rang nε.

Idée :
Si on applique cette inégalité avec un m bien choisi, par exemple tel que am soit proche
d’une autre valeur d’adhérence de (an)n∈N, on va pouvoir en déduire une inégalité valable peu
importe le couple de valeurs d’adhérence choisi.

Etape 4 : Introduction d’une deuxième valeur d’adhérence quelconque

Considérons une autre valeur d’adhérence L de (an)n∈N. On dispose d’un rang mε ∈ N,
mε > nε tel que L − ε < amε < L + ε. Par transitivité de (<),

L − ε < K + 2ε ⇔ L < K + ε

En laissant tendre ε vers 0, ce qui est licite car l’inégalité est valable pour tout ε > 0 et K et
L ne dépendent pas de ε, on obtient

L ≤ K (l’inégalité devient large)
Si on avait initialement choisi L puis K, le même raisonnement donnerait

K ≤ L

Donc K = L (antisymétrie de (≤)).
Ce qui est important ici est d’avoir pris K et L quelconque, ce qui permet d’échanger leurs
rôles dans l’inégalité obtenue. On dit que K et L ont des rôles symétriques.

Conclusion :
On a montré que deux valeurs d’adhérence quelconque de (an)n∈N étaient nécessairement
égales. Donc (an)n∈N possède au plus une valeur d’adhérence. On sait d’après ce qui
précède (Bolzano-Weierstrass) qu’elle en admet au moins une.



(an)n∈N est une suite réelle bornée possédant une unique valeur d’adhérence, elle converge.

Remarque :
Lorsque j’ai initialement résolu l’exercice, en arrivant à l’inégalité

∀m > nε am ≤ K + 2ε

J’ai immédiatement pensé à travailler avec lim sup
n→+∞

an qui est la plus grande valeur d’adhé-
rence de (an)n∈N. Par définition,

lim sup
n→+∞

an := lim
n→+∞

sup
p≥n

ap

En effet, l’inégalité pour tout m > nε am ≤ K + 2ε permet d’obtenir sup
p≥nε

ap ≤ K + 2ε. La

décroissance de la suite (sup
p≥n

ap)n∈N et sa convergence vers lim sup
n→+∞

an permettent de passer à

la limite dans l’inégalité ci-dessous :

∀n ≥ nε sup
p≥n

ap ≤ sup
p≥nε

ap ≤ K + 2ε

⇒ lim
n→+∞

sup
p≥n

ap ≤ K + 2ε

Toujours en laissant ε tendre vers 0,

⇒ lim sup
n→+∞

an ≤ K

Puis comme lim sup
n→+∞

an est la plus grande valeur d’adhérence de (an)n∈N,

lim sup
n→+∞

an ≥ K

Au final lim sup
n→+∞

an = K. K étant une valeur d’adhérence quelconque, on a montré que la seule
valeur d’adhérence possible de (an)n∈N était lim sup

n→+∞
an, ce qui permet de conclure ((an)n∈N

étant bornée), qu’elle converge.
Malheureusement, la notion de lim sup

n→+∞
an est hors programme du programme de classe

préparatoire scientifique. Il faudra être en mesure de justifier ses propriétés si on l’invoque.
Soulignons qu’une preuve classique du théorème de Bolzano -Weirstrass consiste à construire
une suite extraite de (an)n∈N convergeant vers lim sup

n→+∞
an. Enfin, l’étude des propriétés de

lim sup
n→+∞

an et lim inf
n→+∞

an ont fait l’objet de 4 questions sur les 20 du sujet Mines Ponts Maths
1 MP 2018.



2ème preuve par décroissance globale

La preuve que je vais présenter ici est simple à comprendre mais beaucoup plus astucieuse.
Soit n ∈ N.
On dispose de l’inégalité fournie par l’énoncé :

an+1 ≤ an + bn

Idée :
Cette inégalité nous informe sur l’augmentation maximale entre deux pas de la suite. Entre
an et an+1 on peut gagner au plus bn, entre an+1 et an+2, au plus bn+1, et ainsi de suite. Ainsi,
à partir du rang n, la suite (ap)p≥n possède une marge maximale d’augmentation donnée
par

bn + bn+1 + bn+2 + · · · =
+∞∑
k=n

bk.

Or plus n augmente, plus cette augmentation potentielle de (ap)p≥n diminue :

+∞∑
k=n

bk ≥
+∞∑

k=n+1
bk

la quantité de droite représentant la marge maximale de (ap)p≥n+1.

Par conséquent, en considérant la suite (an +
+∞∑
k=n

bk)n∈N, c’est à dire "valeur actuelle + potentiel

d’augmentation", on obtient une quantité décroissante avec n.
Formalisons.
Considérons la suite (Sn)n∈N := (an +

+∞∑
k=n

bk)n∈N.

Soit n ∈ N.
D’après l’inégalité an+1 ≤ an + bn,

Sn+1 = an+1 +
+∞∑

k=n+1
bk ≤ an + bn +

+∞∑
k=n+1

bk

⇔ Sn+1 ≤ an +
+∞∑
k=n

bk ⇔ Sn+1 ≤ Sn

(Sn)n∈N est décroissante, minorée par 0 (tous ses termes sont positifs), elle converge. Notons
s ∈ R+ sa limite.
On écrit :

an = Sn −
+∞∑
k=n

bk −→
n→+∞

s − 0 = s

(an)n∈N converge vers s.



Résumé des preuves

Preuve 1 : par valeurs d’adhérence

1) Montrer que (an)n∈N est bornée grâce aux 2 inégalités données par l’énoncé :

∀n ∈ N 0 ≤ an et an+1 ≤ an + bn ⇒ ∀n ∈ N 0 ≤ an ≤ a0 +
+∞∑
k=0

bk

2) Toujours en considérant l’inégalité de base, montrer que

∀(m, n) ∈ N2, m > n ⇒ am ≤ an +
+∞∑
k=n

bk

3) Fixer ε > 0. Utiliser
+∞∑
k=n

bk −→
n→+∞

0 et considérer une valeur d’adhérence K pour montrer

∃nε ∈ N | ∀m > nε am ≤ K + 2ε

4) Considérer une autre valeur d’adhérence L pour montrer que

L < K + ε

5) Laisser ε tendre vers 0, pour obtenir L ≤ K. Invoquer le rôle symétrique de L et K pour
conclure L = K. Conclure que (an)n∈N converge car bornée + unique valeur d’adhérence.

Preuve 2 : par décroissance globale

1) Montrer que (Sn)n∈N := (an +
+∞∑
k=n

bk)n∈N est décroissante grâce à an+1 ≤ an + bn.

2) Conclure grâce à

an = Sn −
+∞∑
k=n

bk −→
n→+∞

s − 0 = s


